Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells

Abstract

The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ammonium cation-based 2D and molecular passivation layers.
Fig. 2: Fabrication methods to produce a 2D or molecular cation passivation layer.
Fig. 3: Three possible outcomes of applying ammonium ligands on top of perovskite films though solution processing.
Fig. 4: Factors driving the formation of a 2D perovskite on top of 3D perovskite.
Fig. 5: Impact of molecular or 2D perovskite passivation layers on solar cell performance.
Fig. 6: Passivation mechanisms.
Fig. 7: Photophysics of 2D perovskite passivation layers and molecular cation-passivated PSCs.
Fig. 8: Estimated T80 lifetimes extrapolated from stability data in literature reports.

Similar content being viewed by others

References

  1. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  Google Scholar 

  2. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  Google Scholar 

  3. Jang, Y. W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  Google Scholar 

  4. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  Google Scholar 

  5. Proppe, A. H. et al. Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nat. Commun. 12, 3472 (2021).

    Article  Google Scholar 

  6. Ugur, E. et al. Front-contact passivation through 2D/3D perovskite heterojunctions enables efficient bifacial perovskite/silicon tandem solar cells. Matter 6, 2919–2934 (2023).

    Article  Google Scholar 

  7. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    Article  Google Scholar 

  8. Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article  Google Scholar 

  9. Xue, J. et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021).

    Article  Google Scholar 

  10. Zhao, T., Chueh, C.-C., Chen, Q., Rajagopal, A. & Jen, A. K.-Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 1, 757–763 (2016).

    Article  Google Scholar 

  11. Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268–273 (2022).

    Article  Google Scholar 

  12. Caiazzo, A. et al. 3D perovskite passivation with a benzotriazole-based 2D interlayer for high-efficiency solar cells. ACS Appl. Energy Mater. 6, 3933–3943 (2023).

    Article  Google Scholar 

  13. Gharibzadeh, S. et al. Record open‐circuit voltage wide‐bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  14. Lai, H. et al. High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Adv. Energy Mater. 12, 2202438 (2022).

    Article  Google Scholar 

  15. Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, 7930 (2021).

    Article  Google Scholar 

  16. Cacovich, S. et al. Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 2868 (2022).

    Article  Google Scholar 

  17. Xia, J. et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A Mater. 9, 2919–2927 (2021).

    Article  Google Scholar 

  18. Hu, H. et al. Perovskite quantum wells formation mechanism for stable efficient perovskite photovoltaics—a real‐time phase‐transition study. Adv. Mater. 33, 2006238 (2021).

    Article  Google Scholar 

  19. Kodalle, T. et al. Revealing the transient formation dynamics and optoelectronic properties of 2D Ruddlesden–Popper phases on 3D perovskites. Adv. Energy Mater. 13, 2201490 (2023).

    Article  Google Scholar 

  20. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  Google Scholar 

  21. Chakkamalayath, J., Hiott, N. & Kamat, P. V. How stable is the 2D/3D interface of metal halide perovskite under light and heat? ACS Energy Lett. 8, 169–171 (2023).

    Article  Google Scholar 

  22. Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192–2199 (2019).

    Article  Google Scholar 

  23. Suo, J. et al. Interfacial engineering from material to solvent: a mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics. Nano Energy 94, 106924 (2022).

    Article  Google Scholar 

  24. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  Google Scholar 

  25. Zhao, X. et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377, 307–310 (2022).

    Article  Google Scholar 

  26. Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A Mater. 7, 16912–16919 (2019).

    Article  Google Scholar 

  27. Brunetti, B., Cavallo, C., Ciccioli, A., Gigli, G. & Latini, A. On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016).

    Article  Google Scholar 

  28. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  Google Scholar 

  29. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  Google Scholar 

  30. Kerner, R. A. et al. Amine additive reactions induced by the soft Lewis acidity of Pb2+ in halide perovskites. Part I: evidence for Pb–alkylamide formation. J. Mater. Chem. C Mater. 7, 5251–5259 (2019).

    Article  Google Scholar 

  31. Li, Z. et al. Ammonia for post-healing of formamidinium-based perovskite films. Nat. Commun. 13, 4417 (2022).

    Article  Google Scholar 

  32. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  Google Scholar 

  33. Yin, W.-J. et al. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  Google Scholar 

  34. Oner, S. M. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324–330 (2022).

    Article  Google Scholar 

  35. Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    Article  Google Scholar 

  36. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  Google Scholar 

  37. Warby, J. et al. Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12, 2103567 (2022).

    Article  Google Scholar 

  38. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022).

    Article  Google Scholar 

  39. Liu, J. et al. Efficient and stable perovskite–silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  Google Scholar 

  40. Sutanto, A. A. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 7, 1903–1916 (2021).

    Article  Google Scholar 

  41. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  Google Scholar 

  42. Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).

    Article  Google Scholar 

  43. Ansari, F. et al. Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells. J. Am. Chem. Soc. 142, 11428–11433 (2020).

    Article  Google Scholar 

  44. Zhao, L. et al. Chemical polishing of perovskite surface enhances photovoltaic performances. J. Am. Chem. Soc. 144, 1700–1708 (2022).

    Article  Google Scholar 

  45. Zhang, Z. et al. Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells. Sol. Energy Mater. Sol. Cells 187, 113–122 (2018).

    Article  Google Scholar 

  46. Peibst, R. et al. Working principle of carrier selective poly-Si/c-Si junctions: is tunnelling the whole story? Sol. Energy Mater. Sol. Cells 158, 60–67 (2016).

    Article  Google Scholar 

  47. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  Google Scholar 

  48. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019).

    Article  Google Scholar 

  49. Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    Article  Google Scholar 

  50. Liang, C. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2020).

    Article  Google Scholar 

  51. Proppe, A. H. et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018).

    Article  Google Scholar 

  52. Westbrook, R. J. E. et al. 2D phase purity determines charge-transfer yield at 3D/2D lead halide perovskite heterojunctions. J. Phys. Chem. Lett. 12, 3312–3320 (2021).

    Article  Google Scholar 

  53. Green, M. A. The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).

    Article  Google Scholar 

  54. Zhang, F. et al. Metastable Dion–Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  Google Scholar 

  55. Bertoluzzi, L. et al. Mobile ion concentration measurement and open-access band diagram simulation platform for halide perovskite solar cells. Joule 4, 109–127 (2020).

    Article  Google Scholar 

  56. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  57. Thiesbrummel, J. et al. Universal current losses in perovskite solar cells due to mobile ions. Adv. Energy Mater. 11, 2101447 (2021).

    Article  Google Scholar 

  58. Gutierrez-Partida, E. et al. Large-grain double cation perovskites with 18 μs lifetime and high luminescence yield for efficient inverted perovskite solar cells. ACS Energy Lett. 6, 1045–1054 (2021).

    Article  Google Scholar 

  59. Dasgupta, A. et al. Visualizing macroscopic inhomogeneities in perovskite solar cells. ACS Energy Lett. 7, 2311–2322 (2022).

    Article  Google Scholar 

  60. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  Google Scholar 

  61. Teale, S. et al. Dimensional mixing increases the efficiency of 2D/3D perovskite solar cells. J. Phys. Chem. Lett. 11, 5115–5119 (2020).

    Article  Google Scholar 

  62. Liu, Z. et al. In situ observation of vapor-assisted 2D–3D heterostructure formation for stable and efficient perovskite solar cells.Nano Lett. 20, 1296–1304 (2020).

    Article  Google Scholar 

  63. Lin, D. et al. Stable and scalable 3D–2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy 59, 619–625 (2019).

    Article  Google Scholar 

  64. Dualeh, A. et al. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014).

    Article  Google Scholar 

  65. La-Placa, M. G. et al. Vacuum-deposited 2D/3D perovskite heterojunctions. ACS Energy Lett. 4, 2893–2901 (2019).

    Article  Google Scholar 

  66. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Ang. Chem. Int. Ed. 53, 11232–11235 (2014).

    Article  Google Scholar 

  67. Emery, Q. et al. Encapsulation and outdoor testing of perovskite solar cells: comparing industrially relevant process with a simplified lab procedure. ACS Appl. Mater. Interfaces 14, 5159–5167 (2022).

    Article  Google Scholar 

  68. Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023).

    Article  Google Scholar 

  69. Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017).

    Article  Google Scholar 

  70. Hoffmann, L. et al. Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 10, 6006–6013 (2018).

    Article  Google Scholar 

  71. Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016).

    Article  Google Scholar 

  72. Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    Article  Google Scholar 

  73. Huang, Z. et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability. ACS Energy Lett. 4, 1521–1527 (2019).

    Article  Google Scholar 

  74. Chen, R. et al. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy 8, 839–849 (2023).

    Article  Google Scholar 

  75. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    Article  Google Scholar 

  76. Sutanto, A. A. et al. Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability. J. Mater. Chem. A Mater. 8, 2343–2348 (2020).

    Article  Google Scholar 

  77. Cho, J., Dubose, J. T., Le, A. N. T. & Kamat, P. V. Suppressed halide ion migration in 2D lead halide perovskites. ACS Mater. Lett. 2, 565–570 (2020).

    Article  Google Scholar 

  78. Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).

    Article  Google Scholar 

  79. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  80. Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2017).

    Article  Google Scholar 

  81. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  Google Scholar 

  82. Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  Google Scholar 

  83. Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  Google Scholar 

  84. Cui, P. et al. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019).

    Article  Google Scholar 

  85. Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018).

    Article  Google Scholar 

  86. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  Google Scholar 

  87. Yang, D. et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018).

    Article  Google Scholar 

  88. Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

    Article  Google Scholar 

  89. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  Google Scholar 

  90. Chen, Y. et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10, 1112 (2019).

    Article  Google Scholar 

  91. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019).

    Article  Google Scholar 

  92. Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    Article  Google Scholar 

  93. Chung, J. et al. Impact of electrode materials on process environmental stability of efficient perovskite solar cells. Joule 3, 1977–1985 (2019).

    Article  Google Scholar 

  94. Xu, Z. et al. A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31, 1900390 (2019).

    Article  Google Scholar 

  95. Niu, X. et al. Temporal and spatial pinhole constraints in small-molecule hole transport layers for stable and efficient perovskite photovoltaics. J. Mater. Chem. A Mater. 7, 7338–7346 (2019).

    Article  Google Scholar 

  96. Kim, H. et al. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9, 1902740 (2019).

    Article  Google Scholar 

  97. Abuhelaiqa, M. et al. Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy Environ. Sci. 12, 1910–1917 (2019).

    Article  Google Scholar 

  98. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  Google Scholar 

  99. Xie, J. et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering. Adv. Mater. 31, 1902543 (2019).

    Article  Google Scholar 

  100. Hang, P. et al. An interlayer with strong Pb–Cl bond delivers ultraviolet-filter-free, efficient, and photostable perovskite solar cells. iScience 21, 217–227 (2019).

    Article  Google Scholar 

  101. Wang, P. et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 32, 1905766 (2020).

    Article  Google Scholar 

  102. Zhang, L. et al. Side-chain engineering on dopant-free hole-transporting polymers toward highly efficient perovskite solar cells (20.19%). Adv. Funct. Mater. 29, 1904856 (2019).

    Article  Google Scholar 

  103. Zhang, Y. et al. Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett. 5, 360–366 (2020).

    Article  Google Scholar 

  104. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  Google Scholar 

  105. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  Google Scholar 

  106. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).

    Article  Google Scholar 

  107. Wu, S. et al. 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).

    Article  Google Scholar 

  108. Shen, C. et al. Stabilizing formamidinium lead iodide perovskite by sulfonyl-functionalized phenethylammonium salt via crystallization control and surface passivation. Sol. RRL 4, 2000069 (2020).

    Article  Google Scholar 

  109. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  Google Scholar 

  110. Kim, M. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  Google Scholar 

  111. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  Google Scholar 

  112. Park, B. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428 (2021).

    Article  Google Scholar 

  113. Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).

    Article  Google Scholar 

  114. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  Google Scholar 

  115. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  Google Scholar 

  116. Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).

    Article  Google Scholar 

  117. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  Google Scholar 

  118. Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).

    Article  Google Scholar 

  119. Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photon. 15, 681–689 (2021).

    Article  Google Scholar 

  120. Wang, T. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232 (2022).

    Article  Google Scholar 

  121. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  Google Scholar 

  122. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  Google Scholar 

  123. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  Google Scholar 

  124. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  Google Scholar 

  125. Li, G. et al. Highly efficient p–i–n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

    Article  Google Scholar 

  126. Bai, Y. et al. Initializing film homogeneity to retard phase segregation for stable perovskite solar cells. Science 378, 747–754 (2022).

    Article  Google Scholar 

  127. Chen, T. et al. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells. Nat. Commun. 14, 6125 (2023).

    Article  Google Scholar 

  128. Ye, S. et al. Expanding the low-dimensional interface engineering toolbox for efficient perovskite solar cells. Nat. Energy 8, 284–293 (2023).

    Article  Google Scholar 

  129. Li, H. et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023).

    Article  Google Scholar 

  130. Li, F. et al. Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability. Nat. Photon. 17, 478–484 (2023).

    Article  Google Scholar 

  131. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  Google Scholar 

  132. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  Google Scholar 

  133. Liu, X. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photon. 17, 96–105 (2022).

    Article  Google Scholar 

  134. Xu, J. et al. Anion optimization for bifunctional surface passivation in perovskite solar cells. Nat. Mater. 22, 1507–1514 (2023).

    Article  Google Scholar 

  135. Yan, L. et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat. Energy 8, 1158–1167 (2023).

    Article  Google Scholar 

  136. Li, Z. et al. Stabilized hole-selective layer for high-performance inverted p–i–n perovskite solar cells. Science 382, 284–289 (2023).

    Article  Google Scholar 

  137. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  Google Scholar 

  138. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  Google Scholar 

  139. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  Google Scholar 

  140. Liang, Z. et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023).

    Article  Google Scholar 

  141. Huang, Z. et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537 (2023).

    Article  Google Scholar 

  142. Chen, W. et al. Interfacial stabilization for inverted perovskite solar cells with long-term stability. Sci. Bull. 66, 991–1002 (2021).

    Article  Google Scholar 

  143. Zhang, T. et al. Stable and efficient 3D–2D perovskite–perovskite planar heterojunction solar cell without organic hole transport layer. Joule 2, 2706–2721 (2018).

    Article  Google Scholar 

  144. Madhavan, V. E. et al. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl. Energy Mater. 3, 114–121 (2020).

    Article  Google Scholar 

  145. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  Google Scholar 

  146. Zhao, S. et al. General nondestructive passivation by 4-fluoroaniline for perovskite solar cells with improved performance and stability. Small 14, e1803350 (2018).

    Article  Google Scholar 

  147. Ye, F. et al. Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022).

    Article  Google Scholar 

  148. You, S. et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023).

    Article  Google Scholar 

  149. Zhu, H. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32, 1907757 (2020).

    Article  Google Scholar 

  150. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge: the HY-NANO project, which received funding from a European Research Council Starting Grant 2018 grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 802862); the SPIKE project, which received funding from a European Research Council Proof of Concept 2022 grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 101068936). G.G. acknowledges the GOPV project (CSEAA_00011), which received funds from Bando Ricerca di Sistema—CSEA—TIPO A Piano triennale 2019–2021 Decreto direttoriale 27 Ottobre 2021 del Ministero della Transizione Ecologica; MASE-(ex MITE); and Ministero dell’Università e della Ricerca and University of Pavia through the programme Dipartimenti di Eccellenza 2023–2027. This research was made possible by a US Department of the Navy Office of Naval Research Grant (N00014-20-1-2572). This work was supported in part by the Ontario Research Fund’s Research Excellence programme (ORF7; Ministry of Research and Innovation, Ontario Research Fund; Research Excellence Round 7). S.T. was supported by the Hatch Scholarship for Sustainable Energy Research.

Author information

Authors and Affiliations

Authors

Contributions

M.D. and S.T. performed the literature review and contributed equally to writing the paper. B.C. contributed to discussion of the idea and revision of the manuscript. E.H.S. and G.G. conceived of the idea and supervised the work.

Corresponding authors

Correspondence to Edward H. Sargent or Giulia Grancini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Yi-Bing Cheng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Database of 50 articles that investigate the use of 2D perovskite or molecular cation passivation strategies. The database includes the paper title, reference to published article, the ligand (usually a cation) and anion (if applicable) of the passivation treatment, the annealing condition, the 3D perovskite composition, the determined surface structure, the polarity of the device, the effect on Voc, Jsc, FF and PCE of the passivation treatment, stability data and the effect of passivation on quasi-Fermi level splitting.

Source data

Source Data Fig. 1

Database of single junction perovskite solar cell efficiency certifications from 2015 onwards. The database includes full device parameters, references to published articles and whether the cell used an ammonium cation (2D or molecular cation) passivation step.

Source Data Fig. 5

Source data for Fig. 5 (derived from Supplementary Data 1).

Source Data Fig. 6

Source data for Fig. 6c (derived from Supplementary Data 1).

Source Data Fig. 8

Source data for Fig. 8 (derived from Supplementary Data 1).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teale, S., Degani, M., Chen, B. et al. Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-024-01529-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing