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Increasing the resilience of the Texas power 
grid against extreme storms by hardening 
critical lines

Julian Stürmer1,2, Anton Plietzsch    1,3, Thomas Vogt    1, Frank Hellmann    1 , 
Jürgen Kurths1,4,5, Christian Otto    1 , Katja Frieler    1 & Mehrnaz Anvari    1,6 

The Texas power grid on the Gulf Coast of the United States is frequently 
hit by tropical cyclones (TCs) causing widespread power outages, a risk 
that is expected to substantially increase under global warming. Here we 
introduce a new approach that combines a probabilistic line failure model 
with a network model of the Texas grid to simulate the spatio-temporal 
co-evolution of wind-induced failures of high-voltage transmission lines 
and the resulting cascading power outages from seven major historical TCs. 
The approach allows reproducing observed supply failures. In addition, 
compared to existing static approaches, it provides a notable advantage in 
identifying critical lines whose failure can trigger large supply shortages. 
We show that hardening only 1% of total lines can reduce the likelihood of 
the most destructive type of outage by a factor of between 5 and 20. The 
proposed modelling approach could represent a so far missing tool for 
identifying effective options to strengthen power grids against future TC 
strikes, even under limited knowledge.

Modern societies depend heavily on reliable access to electricity. Power 
outages have the potential to disrupt transportation and telecommuni-
cation networks, heating and health systems, the cooling chain under-
pinning food delivery and more1–3. Depending on the cause of power 
outages and the amount of physical damages to infrastructures, the 
recovery of the electric network and the social infrastructures depend-
ent on it, often takes days or even months4. Such outages are often 
driven by extreme weather events. In Norway 90% of all overhead line 
failures are caused by extreme weather, which involves strong winds, 
icing and lightning strikes5. In February 2021, a winter storm in Texas 
led to outages that in turn caused a breakdown of the gas supply and 
thus the heating sector6–8. Further, tropical cyclone (TC) impacts can 
be particularly devastating. In the summer months, the Gulf Coast and 
the East Coast of the United States are frequently hit by TCs that entail 
widespread outages and costs of billions of dollars, as detailed in the 

State of Reliability reports of the North American Electric Reliability 
Corporation9,10. For example, Hurricane Ike hitting southeast Texas 
on 13 September 2008 destroyed around 100 towers of high-voltage 
transmission lines and cut off electric power for between 2.8 million 
and 4.5 million customers for weeks to months11,12. On 29 August 2021, 
Hurricane Ida made landfall in Louisiana and destroyed major transmis-
sion lines delivering power into New Orleans, causing power outages 
that affected more than a million customers13.

Reliability against line failures in high-voltage power grids is 
usually discussed in terms of the N-1 (rarely also N-2) security of the 
system, that is, the ability of the system to stay fully functional upon 
the failure of one or two elements14. When a line fails, the power flow 
automatically reroutes through the intact grid. To avoid damages from 
overloads caused by the rerouting, highly loaded lines are removed 
by automatic protection devices or, in some cases, manually from the 
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mechanisms and unavoidable overproduction. This approach allows 
us to (1) consider a large number of potential realizations of line fail-
ures along the TC’s tracks and (2) assess cascading secondary failures. 
Further, critical power lines in the high-voltage transmission system 
whose protection could most effectively prevent cascades and the asso-
ciated widespread power outages can be identified. This is especially 
interesting from a climate change perspective because the proportion 
of very intense TCs in the North Atlantic is projected to increase under 
global warming34–36.

Modelling cascading losses in the Texas grid
Our co-evolution modelling approach explicitly captures the dynamical 
interplay of an extreme wind event with the power grid by temporally 
resolving both the primary wind damage and the resulting cascades 
of secondary failures. We will use this approach to study a selection 
of seven historical TCs that impacted the Texas power grid between 
2003 and 2020. These cover different types of trajectory and intensity 
(Supplementary Note 1 and Supplementary Figs. 1 and 2). The selected 
storms include major hurricane-strength TCs, such as hurricanes Ike 
and Harvey that made landfall in Texas in September 2008 and August 
2017, respectively, and destroyed numerous high-voltage (115–500 kV) 
transmission lines (about 106 (ref. 37) and 97 lines38 were reportedly 
destroyed by Harvey and Ike, respectively) (Fig. 1a). Further, we consider 
five TCs, that is, Hurricanes Claudette (2003), Hanna (2020) and Laura 
(2020) and Tropical Storms Erin (2007) and Hermine (2010) that caused 
less damage to the Texas grid39–43, either because they were substantially 
weaker (for example, Erin and Hermine) or because they primarily 
affected neighbouring states (for example, Hanna, which made landfall 
in Louisiana). The TCs considered here affected different parts of the 
Texas grid; Claudette, Erin and Hanna continued to move westward 
after landfall and affected the southern and western parts of the grid. 
The rest of the considered TCs were steered northward by the Coriolis 
effect after landfall and mainly affected the western parts of the grid34.

When a TC hits a power grid, lines do not collapse simultaneously 
but sequentially over the hours or days of the TC’s passage. Making 
use of the chronological order of the line destructions, we divide each 
considered TC landfall scenario into a sequence of 5-minute time steps. 
In most of these individual steps, only one additional line fails, that is, 
these situations can be addressed by power distribution models also 

network. These secondary failures of lines can trigger a cascade15–21 
of additional failures. If N-1 security is given, single line failures do 
not trigger such cascades. However, multiple concurrent failures—as 
probably occurred in the US–Canadian blackout in 200322 and as are 
typical for TCs, which cause widespread primary damages—can trigger 
substantial secondary failures. These cascades play an important role 
in amplifying the resulting blackouts23.

The N-1 approach to system resilience cannot be scaled to such 
events. Even an exhaustive N-5 security assessment is infeasible, and 
major TCs often damage tens or even hundreds of lines. These damages 
cannot be fully mitigated by an electric network. N-1 security is typi-
cally studied by simulating the reaction of the system to every possible 
failure scenario. As the number of these scenarios scales exponentially 
with the number of failures, it is computationally infeasible to consider 
all possible scenarios for larger events.

Several earlier studies have analysed the spatial and temporal 
patterns of lines destroyed by TCs using statistical methods such as 
negative binomial regression models24,25 and non-stationary Poisson 
processes26. However, these studies did not consider the impact of 
these damages on the power grid. In an effort to address this gap, 
machine learning techniques were applied to predict power outages 
caused by various types of storm on a 2-km grid27, but this approach 
does not provide information on how these outages occur or how they 
can be prevented.

TC-induced failures affecting large numbers of lines have been 
recently studied from a detailed mechanistic perspective28–31. Aiming 
to capture the primary damages well, these works focus on the develop-
ment of sophisticated line failure models. The TC impacts on the power 
grid are then described by removing all damaged elements at once or in 
large batches and using optimal dispatch models to estimate how much 
load such a damaged system can still provide. This requires the (rather 
strong) assumption of a perfect, omniscient system operator31–33. A 
further crucial limitation of this approach is that the optimization in 
these models ensures that operational bounds are never violated. Thus, 
these models do not capture failure cascades.

Here we go beyond the existing literature by introducing a 
co-evolution modelling approach. It combines a spatio-temporal sto-
chastic line failure model with a stepwise modelling of the resulting 
power outages, accounting for automatic or manual line protection 
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Fig. 1 | Probability distributions of primary line failures and final power 
outages. a, Probability distribution ρ of the total number of wind-induced 
line failures Np as generated by the probabilistic line failure model for each of 
the seven recent TCs hitting Texas. The storms are categorized according to 
the Saffir–Simpson scale (number in brackets behind the storms’ names), and 
tropical storms that did not reach hurricane strength at landfall are denoted 
by TS. TCs are sorted according to the means of the distributions μp, which 
are indicated as solid vertical lines. The mean numbers of damaged lines for 

Hurricane Harvey (105) and Hurricane Ike (90) are very close to the reported 
numbers in the high-voltage (115 kv to 500 kV) transmission grid (106 for Harvey 
and about 97 for Ike). b, Probability distribution of the associated total power 
outage Pout after TC passage. The dashed vertical lines pr

out indicate the reported 
power outages listed in Supplementary Table 1, and the solid vertical lines Pout 
represent the means. The inset highlights large cascading failures that can also 
occur for the less impactful TCs. Methods provides the model parameters used in 
the simulations. Each storm is presented with the same colour in a and b.
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used for N-1 or N-2 security assessments. At this resolution, it is also 
reasonable to assume that cascades of secondary failures have run 
their course before further lines are destroyed by the TC44,45 (further 
discussion regarding the temporal resolution is in Methods and Sup-
plementary Note 9).

We solve individual scenarios by representing the Texas power 
grid in a direct current (d.c.) power flow approximation with con-
servative load balancing assumptions (Methods and Supplementary 
Notes 3 and 4). Our co-evolution approach allows us to account for 
the ‘path dependency’ of the solution: every time a line collapses, 
overload protection can cause more lines to fail. At the same time, 
control mechanisms are immediately activated to restore energy 
balance and limit the effect of the failures (Supplementary Note 4). 
If an islanded part of the grid cannot be rebalanced, this part and all 
lines in it are considered failed. Primary damages that occur later 
along the TC track then meet a partially destroyed, rebalanced grid. 
Thus, the effect of later failures can be more, or even less, intense. 
It is the resilience of these intermediate, partially destroyed states 
that ultimately decides whether the impact of the TC is amplified by 
secondary failures.

Unfortunately, neither detailed information about the topology of 
the exposed power grid, nor about the exact number and the location 
of power lines destroyed by the TCs, nor the type of consumers who 
lost power is publicly accessible. Here we use a synthetic model of the 
Texas power grid introduced by Birchfield et al., which includes four 
different high-voltage levels, 115, 161, 230 and 500 kV (ref. 46) (Methods 
and Supplementary Fig. 2).

The employed probabilistic line failure model is forced by the 
modelled historical wind fields of the studied TCs (Methods and Sup-
plementary Note 2). The probability of line failure is described in terms 
of wind speeds and allows generating a large sample of temporally 
resolved realizations of line failure sequences, here 10,000 sequences 
per storm. These scenarios differ greatly with regard to the individual 
failed lines and thus cover a wide range of plausible scenarios (Fig. 1). 
In the default setting considered here, we assume a homogeneous 
base failure rate for all transmission lines. This is our main calibration 
parameter and is tuned to reproduce observed numbers of damaged 
lines and match power outages (Fig. 1a,b and Supplementary Note 5). 
By looking at five additional weaker storms, we found that our model-
ling results are aligned with the inclusive reports of power outages 
and rare damages in the transmission grid (Supplementary Note 5 and 
Supplementary Fig. 10).

The structure of outages
Caused by strong winds, primary damages are concentrated in areas 
close to the centre of the storm, and the number of primary line failures 
follows a Poisson binomial distribution. However, for all seven TCs, 
cascading secondary failures due to overload protection and unavoid-
able islanding substantially increase the total number of affected lines 
and can lead to large 20-GW to 30-GW power outages (Fig. 1b). As the 
most populous city in Texas and a major load centre, the disconnection 
of Houston from the electrical network causes the disconnection of 
a huge number of consumers. Many generators providing energy to 
the major load centres are clustered in the west of Texas. The largest 
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Fig. 2 | Simulation of cascading failures in the Texas power grid induced by 
Hurricane Claudette. a, Schematic variation of power outage Pout and total 
energy not supplied Eout (red area) before (Pre-contingency), during (Hurricane 
phase) and after (Restoration phase) the TC passage (loosely based on ref. 38).  
b, Summary of all realizations of power outage trajectories simulated for Hurricane 
Claudette. Trajectories fall into two categories: those that aggregate damages 
gradually over time (Type I) and those that include a large cascade (Type II).  
c,d, States of the power grid at the beginning and the end of the TC passage for 
two exemplary Type I and Type II trajectories highlighted in panel b. Lines shown 
in black are destroyed (primary damages) or deactivated (secondary failures) 

during TC passage (Supplementary Video 1 shows the structure of failures during 
the simulation). The colour code of the remaining lines indicates relative line 
loading, with darker colours indicating higher relative loads. Blue dashed lines 
indicate the track of the storm centre and blue arrows denote the direction of 
the storm’s movement. Blue shaded circles indicate snapshots of the storm’s 
wind field, with darker colours indicating higher wind speeds. Methods and 
Supplementary Note 5 provide the specification of the model parameters and  
an animation of the cascading failures and load dynamics during the passage  
of Claudette.
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events feature both of these regions going offline (Figs. 2d and 3,  
Supplementary Note 5 and Supplementary Fig. 9). Smaller events  
(Figs. 2c and 3a,d,g) tend to show damage patterns more localized to 
the storm tracks. The resulting distributions of total outages are heavily 
multimodal for all TCs (Fig. 1b).

Large outages do not accumulate gradually over time. Instead the 
disconnections of the load centre of Houston and the production centre 
in the Northwest occur suddenly during one large cascade (Fig. 2b).  
Spatially, it is noteworthy that these cascading failures can lead to 
outages in areas not directly affected by the storm (Fig. 4 provides a 
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comparison of the spatial distribution of primary damages and cas-
cading, secondary failures caused by Hurricane Harvey). For instance, 
during Harvey, Hanna and Claudette, the northwestern section is not 
reached by strong winds (Fig. 3).

To test the robustness of our results with regard to the details of the 
model calibration, we repeated the simulations for a wide range of fail-
ure rates and randomized the failure rates for each line (Supplementary 
Notes 5 and 6). Further, we used a large ensemble of 10,000 realizations 
for each storm to ensure that it represents a wide range of plausible 
grid states. We found the main characteristics of the cascading failure 
dynamics, such as the occurrence of sudden large cascades and mul-
timodal outage distributions, to be robust (Supplementary Table 3). 
For instance, across all parameter settings, we find Harris County to be 
the most vulnerable part of the Texas grid to TC impacts, in line with 
a recent analysis of the National Centers for Environmental Informa-
tion47. These findings suggest that our main results are independent 
of the details of the line failure model and its calibration.

Increasing resilience
We find that large cascades are triggered by the failure of individual 
lines. This suggests that hardening those lines that are likely to trigger 
cascades (for example, by replacing them with underground cables) 
could be an effective resilience-building strategy. To identify the criti-
cal lines that should be hardened, we define a priority index as the 
probability that the wind-induced damage of this specific line trig-
gers a large cascade, that is, a cascade that increases the outage by 
more than 15 GW, averaged over all seven TCs (equations (2) and (4) in 
Methods). For most transmission lines, the priority index is zero, but 
8% of them have a value above 10−4, and 20 lines (about 1% of the grid) 
have a priority index above 10−3.

For comparison, we also calculate the priority index based on  
a conventional, static model in which all damages are applied at once. 

The static index of a line is then defined, analogously to the priority 
index, as the conditional probability of a large outage given that the 
line is in the set of lines damaged by a TC (Methods and Supplementary 
Note 7). According to both the co-evolution model and the static model, 
the critical lines are mostly located in and around Houston (Fig. 5a,b). 
However, the co-evolution model also identifies several critical lines 
not in the area that are not among those identified by the static model.

To estimate how well the models identify critical lines, we consider 
the relative reduction in the probability of large power outages that 
can be achieved by hardening the lines identified. We order the lines 
according to their priority index and evaluate the impact of the TC on 
the system after hardening the most critical one to 20 lines. The prob-
ability of large power outages is reduced smoothly when the number of 
hardened lines is increased. After hardening the 20 most critical lines 
identified by the co-evolution model, the probability of large-scale out-
ages is reduced by a factor 5 to 20. Smaller storms rarely trigger large 
power outages and cascading failures anymore, and the probability is 
dramatically reduced for the most damaging storms Harvey and Ike 
(Fig. 5 and Supplementary Fig. 12). The power outage distributions 
resulting from Harvey and Ike are shifted from the second peak (around 
Pout ~25 GW) to the first peak with Pout ≤ 10 GW (Fig. 5c).

The level of outage reduction reached by hardening the lines 
according to the priority index derived from the co-evolution model 
is generally higher than the protection of the same number of lines 
selected according to the priority index derived by the static model 
(Fig. 5d). The static model allows identifying some of the most criti-
cal lines (Supplementary Note 7), but the marginal reduction in 
large outage probability saturates already after 6–10 lines. For the 
co-evolution model, additional hardening continues to be effective 
until at least 20 lines (Fig. 5c,d). This demonstrates that the latter, 
with its detailed picture of the partially destroyed states, reveals 
genuine and critical information for increasing the resilience of the 
system. These results are robust when assuming randomized failure 
rates (Supplementary Note 5).

Conclusion
A co-evolution model of the Texas power grid was introduced as an 
efficient approach to temporally resolve the line failures and secondary 
grid outages induced by TCs. The model can describe in considerable 
detail how cascading secondary failures amplify the impact of these 
storms by triggering large-scale power outages. It thus can be used to 
identify critical lines that should be protected to effectively increase 
the system’s resilience and prevent the most severe outages.

Our model goes well beyond the state of the art, as represented 
by statistical and economic models that can capture only a static pic-
ture of the event and the network24–33. We have shown that such static 
approaches do not allow the identification of all critical lines during 
extended events. Instead, we see that criticality is revealed by observing 
the system in a large ensemble of partially destroyed states, that is, by 
‘tracking’ the destruction of the system and associated power outages 
and failed lines. We expect that this co-evolution approach will also 
be a promising tool to understand and protect other grids exposed 
to spatio-temporally extended extreme events. However, this study 
is subject to several limitations. First, TC damages do not occur due 
to wind alone and they do not exclusively damage transmission grid 
lines. Flooding plays a major part in storm damages, and damages at 
the distribution level to substations and to transformers are not directly 
accounted for. Further, power grid operators do anticipate and prepare 
the system for incoming storms and can react to conditions on the 
ground beyond the simple rebalancing we use here. To fully understand 
the societal impact of an outage, it is also crucial to understand how 
quickly the system can be restored afterward.

Second, we did not have access to the real topology and parame-
ters of the Texas grid. In accordance with established research practice, 
we used a high-quality surrogate model that is expected to reflect the 
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electrical and spatial characteristics of the Texas grid well46,48. Still, it 
is clear that when comparing TC impacts on the surrogate and on the 
real grid, we should expect differences. Further, given that only very 
few intense TCs have made landfall in Texas in the last decades and 
given the intrinsic stochasticity of the damages, a precise match with 
historic conditions is not an appropriate goal and would very probably 
lead to overfitting.

Third, to take these data limitations into account, the line failure 
model we introduce here is intentionally kept rather abstract. Math-
ematically, the only assumption is that the failure rate of a transmission 
line segment is proportional to the square of the average wind speed 
and its length. The proportionality factor is determined by calibration 
of the overall model and thus will reflect other kinds of failure that occur 
as well to some degree. The overall model should not be interpreted as 
a fully realistic mechanistic model of the storm event but a trade-off 

that successfully reveals structural aspects of the vulnerability of power 
grids in the presence of considerable modelling and data uncertainties.

Whereas the model based on wind speeds and historical TC tracks 
already identified crucial structures in the grid, the co-evolution 
approach could naturally be extended to more sophisticated mod-
els and broader settings. A crucial first step would be to apply this 
method on the real grid topology of Texas. Another important avenue 
of broadening the model is to account for TC-induced flooding (coastal 
flooding, pluvial or fluvial flooding) and associated destructions. These 
may follow a different temporal pattern, where the adequacy of the 
approach proposed here has to be newly tested. This would also pro-
vide a first step towards an assessment of genuine compound events 
in which several stresses for the grid coincide.

Further, combining the developed priority index to identify critical 
lines with additional information about the cost of a reinforcement of 
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the considered lines could also enable the identification of the most 
cost-efficient way to reduce the probability of power outages above a 
critical limit to an intended value (Supplementary Note 6).

Finally, as the proportion of very intense hurricanes in the North 
Atlantic is projected to increase under global warming49, an impor-
tant aim for future research is to (1) map out the associated changes 
in TC risk to the Texas power grid (and other vulnerable grids) and 
(2) assess the benefits and limitations of adaptation measures. This 
can be achieved by driving the co-evolution model with ensembles of 
synthetic tracks of future TCs at different levels of global warming35.

Methods
Power grid data of Texas
For the study we used the publicly available power grid test case 
ACTIVSg2000 (ref. 48) that covers the area of the so-called ERCOT 
Interconnection, which supplies 90% of the electricity demand in 
Texas48. The test case is synthetic but resembles fundamental proper-
ties of the real grid, such as the spatial distribution of power generation 
and demand50. It encompasses 2,000 buses with geographic locations, 
3,116 branches (both transmission lines and transformers) and covers 
four different voltage levels. The test case comes with all required 
electrical parameters ranging from the power injections of buses to 
the power flow capacities of transmission lines and transformers. The 
flow capacities Cij play a particularly important role for the simulation 
of cascading failures as they determine the amount of power that can be 
transported by individual lines and transformers without potentially 
damaging the equipment.

Historical tropical cyclone data
TC storm tracks are extracted from the International Best Track Archive 
for Climate Stewardship (IBTrACS)47,51 as time series of cyclone centre 
coordinates along with meteorological variables such as maximum sus-
tained wind speeds and minimum pressure on a 3–6 h snapshot basis. 
From the track records, we compute time series of wind fields within 
a radius of 300 km from the storm centre using the Holland model for 
surface winds, as implemented in the Python-package CLIMADA36,52, 
at a spatial resolution of 0.1° (approximately 11 km) and a temporal 
resolution of 5 minutes. The intensities of the considered storms are 
also shown along the respective tracks in Supplementary Fig. 1 whereas 
other properties of the storms are listed in Supplementary Table 1.

Transmission line failure model
To model wind-induced failures of transmission lines, we first dif-
ferentiate between overhead transmission lines and underground 
cables in the power grid of Texas. Following Birchfield et al., we ana-
lyse lines that are shorter than 12.875 km (8 miles) and connect a total 
load of at least 200 MW as underground cables46. All other lines are 
assumed to be overhead transmission lines. The latter are then 
divided into segments of length l ≈ 161 m, which corresponds to the 
average distance between transmission towers in Texas53. We model 
failure of segments as a Poisson process with a time varying rate r(vt) 
depending on the average wind speed experienced by a segment. A 
similar mathematical setup is considered in ref. 27; however, instead 
of trying to model the spatial characteristics of the failure rates, they 
aggregate over space, arriving at a purely temporal model. To illus-
trate the implications of this mathematical form of the failure model, 
we quickly review some properties of the Poisson process for a con-
stant rate r. For this process the time to failure is distributed as re−rτ  
and the mean time to failure is 1/r. The probability for the line to have 
failed by time τ is just 1 − er.τ. If rτ is small the probability is well approx-
imated by r.τ. To simulate this process, we discretize it in time steps 
τ. As the wind field is changing slowly relative to our time steps, we 
simply fix the rate during the time step to its initial value. Then the 
probability of failure of a line segment k experiencing winds of vt 
during a step of duration τ is given by:

pk(vτ) = r (vt) τ. (1)

According to equation (1), the probability of simultaneous fail-
ures of different line segments increases with time step size τ. A fur-
ther discussion of the role of the time resolution can be found in 
Supplementary Note 9. To obtain a failure model we fix the functional 
dependence of r on v and then calibrate the overall rate on the real 
data. The line failure model established by Winkler et al. assumes that 
the failure probability is proportional to the ratio of the wind force 
and the breaking force54. According to the guidelines published by 
the American Society of Civil Engineers55, the wind force Fkwind (v) is 
quadratic in v, and we adopt this dependence for our failure rate, 
arriving at the failure model pk (vt) = ccalvt

2τ . The ccal is calibrated to 
reproduce the number of transmission line outages for Harvey and 
Ike (Supplementary Note 5).

To make sure that our calibration arrives at plausible values, we 
insert the physical constants from Winkler et al. to arrive at the form 
of the failure model:

r (vt) = rbrk
Fk

wind (vt)
Fbrk

. (2)

The parameter Fbrk represents the breaking force56. Then the 
calibration is done in terms of rbrk, the failure rate when the wind field 
equals the breaking force. The full wind force equation and the mean-
ing and the values of all parameters can be found in Supplementary 
Note 2 and Supplementary Table 2. In all figures shown in the main 
text, rbrk = 0.002 h−1, which we consider plausible, because even during 
strong storms lasting hours, most transmission lines do not fail. Finally 
we observe that the calibrated model reproduces power outages in our 
simulations for all storms considered (Supplementary Note 5).

To rule out a strong dependence on details of this model, we also 
consider a model with a random local variation in failure probability 
of line segments pk (vt) = ccal,randomvt

2τ , where ccal,random is drawn uni-
formly in a plausible range (Supplementary Note 5).

Cascading failure model
Wind-induced line failures can trigger cascades of overload failures in 
the branches of the power grid. As cascading failures typically evolve 
on smaller timescales than the temporal resolution τ of the wind field, 
we can assume a timescale separation. When the network topology is 
changed by a primary damage event, the power flows Pij on the branches 
are rerouted using the d.c. power flow model

Pi = ∑
j=1

Pij =
N

∑
j=1

Bij (θi − θj) . (3)

Here Pi is the net active power injection at the buses, θi is the bus volt-
age angle and Bij is the element of the nodal susceptance matrix that 
comprises the network topology. More details on the assumptions of 
the d.c. power flow model and the software used can be found in Supple-
mentary Note 3. If the new state of the network exhibits any overloaded 
branch (|Pij| > Cij), they are deactivated and the process is repeated. 
When the network reaches a state without overloads, the algorithm 
advances to the next primary damage event. When a load or generator 
gets disconnected or the grid is split into several parts, the global active 
power balance has to be restored in each network component. Moti-
vated by a primary frequency control in real power grids, we adjust the 
outputs of generators uniformly, while respecting their output limits 
defined in the dataset. Whenever the generator limits do not allow us 
to fully restore the global active power balance, we either conduct a 
uniform minimal load shedding or consider the blackout of the whole 
network component in the case of an unavoidable overproduction. The 
details of the algorithm are explained in Supplementary Note 4, and 
the code is available from https://doi.org/10.5281/zenodo.10077864.
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Quantification of power outages
We use the following three different quantities to track the power out-
ages arising in our simulations: (1) PL (t) denotes the total supplied load 
(L) at the end of each time step (t), that is, after the cascading algorithm 
finished, respectively; PL is the power outage trajectory. It is calculated 
by adding up the demands of all connected loads across all islands that 
exist at the given time. Because our co-evolution model assumes that 
cascading failures happen instantaneously, PL (t) represents a step 
function for each individual TC scenario as shown in Fig. 2b. We have 
simulated 104 scenarios for each TC. (2) Any cascading failure that 
actually causes a loss of supplied load results in a vertical transition of 
size ΔPout in PL (t) (Fig. 2a,b). One such transition is annotated with ΔPout 
for the highlighted scenario in Fig. 2b. (3) All cascading failures that 
are triggered in a given TC scenario lead to a final power outage 
Pout = PL

init − PL
final ∈ (0GW, 67.1GW) . The interesting statistics of Pout are 

shown and discussed in Fig. 1b.

Identification of critical lines
We identify critical overhead transmission lines by means of a priority 
index defined for each line (i,j) as

κij ∶=
1
H

∑
h∈H

pij
(II ) (h) , (4)

where H denotes the set of considered TCs (seven TCs in this study) 
and pij

(II ) is the probability of a large cascade being triggered by the 
wind-induced failure of line (i,j). More specifically, we call cascades 
large if their associated power outage ΔPout lies above an empirical 
threshold of 15 GW (indicated as Type II in Fig. 2b and Fig. 5d).  
Equation (4) includes an averaging over all considered TCs to discern 
lines that are critical for multiple TCs. This allows us to propose line 
reinforcements that increase the resilience not only for a particular 
TC. Some properties of the 20 most critical lines found in this study 
are listed in Supplementary Table 3. Figure 5a,b shows the location 
of these lines and demonstrates that reinforcing them indeed 
increases the resilience of the power grid substantially. More details 
of the critical lines and a possibility to incorporate economic consid-
erations into our analysis are discussed in Supplementary Note 6.

Baseline method
Here we apply the static model as a baseline method. By static model 
(Supplementary Note 7), we mean that all primary damages occur 
simultaneously and then the d.c. power model along with global active 
power balance are activated once to bring back the energy balance in 
the system and to evaluate the total final power outages Pout. As dis-
cussed in Supplementary Note 9, the final power outage distributions 
are independent of the time resolution of the wind field, however the 
primary damages leading to large outages, that is, 20 GW to 30 GW, can 
be completely different ones. To indicate the critical lines obtained from 
the static model, first, we separate all scenarios in which Pout > 15GW. 
Then we use equation (4) to calculate the priority index of the primary 
damages leading to large cascades. The top 20 lines with the highest 
priority index have been listed in Supplementary Table 4. As seen in this 
table, except for the six lines highlighted in red, the other lines are 
completely different from lines obtained from the co-evolution model.

Data availability
The observed TCs from IBTrACS47,51 are distributed under the per-
missive World Meteorological Organization open data license 
through the IBTrACS website (https://www.ncei.noaa.gov/products/
international-best-track-archive) and can be directly retrieved through 
the CLIMADA36,52 platform. The electrical network data are openly 
available from Texas A&M University’s power grid test case reposi-
tory (https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
activsg2000/).

Code availability
All code necessary to reproduce the findings in this work is openly 
available. The time-dependent wind fields are computed using the 
open-source platform CLIMADA35,48. The implementations of the trans-
mission line failure and the d.c. power model are available from https://
doi.org/10.5281/zenodo.10077864 and https://gitlab.pik-potsdam.de/
stuermer/itcpg.jl.
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