Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vertical iontronic energy storage based on osmotic effects and electrode redox reactions

Abstract

Making salinity gradient energy practical is a great challenge. Despite recent advancements, the practicality of osmotic energy for portable electronics remains doubtful due to its limited power output and portability constraints. Here we report a method for optimizing the transport of alkali metal ions within two-dimensional nanofluidic channels and coupling it with tailored interfacial redox reactions to store the osmotic energy in a space of tens of micrometres within the cut edge of a polymer film. An ultrahigh output power density of 15,900 W m−2 has been achieved. By connecting the devices in series, commercial electronics can be powered due to the high volumetric specific energy density (9.46 Wh cm−3) and power density (106.33 W cm−3). This work introduces an approach for storing iontronic energy based on osmotic effects, providing a platform for developing renewable, ultrathin and safe power sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The vertical iontronic energy storage device.
Fig. 2: Characterization of ion-transport properties in the planar iontronic energy storage devices with an AIS.
Fig. 3: Working mechanism of the planar iontronic energy storage device with LiI.
Fig. 4: Characterization of the vertical iontronic energy storage device.

Similar content being viewed by others

Data availability

All datasets analysed and generated during the current study are available in both the paper and the Supplementary Information. Source data are provided with this paper.

References

  1. Esfandiar, A. et al. Size effect in ion transport through ångström-scale slits. Science 358, 511–513 (2017).

  2. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Hou, Y. & Hou, X. Bioinspired nanofluidic iontronics. Science 373, 628–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Jager, E. W. H., Smela, E. & Inganäs, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  6. Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Xue, Y. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shao, J.-J., Raidongia, K., Koltonow, A. R. & Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 6, 7602 (2015).

    Article  PubMed  Google Scholar 

  10. Yan, C. et al. Engineering 2D nanofluidic Li-ion transport channels for superior electrochemical energy storage. Adv. Mater. 29, 1703909 (2017).

    Article  Google Scholar 

  11. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron–nitride nanotube. Nature 494, 455–458 (2013).

  12. Zhang, Z., Wen, L. & Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 6, 622–639 (2021).

    Article  CAS  Google Scholar 

  13. Veerman, J., Saakes, M., Metz, S. J. & Harmsen, G. Reverse electrodialysis: evaluation of suitable electrode systems. J. Appl. Electrochem. 40, 1461–1474 (2010).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 11, 875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Z. et al. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 139, 8905–8914 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Z. et al. Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J. Am. Chem. Soc. 137, 14765–14772 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Xin, W. et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 10, 3876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou, Y. & Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 4, 2244–2248 (2020).

    Article  Google Scholar 

  19. Liu, X. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, C.-Y. et al. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, F. et al. A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Mater. Chem. Front. 2, 935–941 (2018).

    Article  CAS  Google Scholar 

  23. Jeong, N. et al. Thickness-modulated and interface-engineered MoS2/TiO2 heterostructures as a highly active and inexpensive cathode for reverse electrodialysis. Appl. Surf. Sci. 504, 144323 (2020).

    Article  CAS  Google Scholar 

  24. Zhu, X. et al. Integrating reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradients and energy storage. ChemSusChem 10, 797–803 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, S. et al. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 12, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Koltonow, A. R. & Huang, J. Two-dimensional nanofluidics. Science 351, 1395–1396 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Fan, X. et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20, 4490–4493 (2008).

    Article  CAS  Google Scholar 

  29. Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012).

    Article  CAS  Google Scholar 

  30. Yang, L. et al. A moisture-enabled fully printable power source inspired by electric eels. Proc. Natl Acad. Sci. USA 118, e2023164118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Wei, D., Yang, F., Jiang, Z. & Wang, Z. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 13, 4965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tokuda, H., Md. Abu Bin Hasan Susan, S. T., Hayamizu, K. & Watanabe, M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006).

  34. Matsumoto, H., Matsuda, T. & Miyazaki, Y. Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett. 29, 1430–1431 (2000).

    Article  Google Scholar 

  35. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

  36. Nightingale, E. R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    Article  CAS  Google Scholar 

  37. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901–911 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Wen, Q. et al. Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 26, 5796–5803 (2016).

    Article  CAS  Google Scholar 

  39. Richards, L. A., Schafer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, L. & Garde, S. Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. 126, 084706 (2007).

    Article  PubMed  Google Scholar 

  41. Razmjou, A. et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 10, 5793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruckenstein, S. & Mukherjee, L. M. Equilibria in ethylenediamine. I. The relative dissociation constants of silver salts and alkali metal halides. J. Phys. Chem. 64, 1601–1607 (1960).

    Article  CAS  Google Scholar 

  43. Lu, L.-L. et al. Extremely fast-charging lithium ion battery enabled by dual-gradient structure design. Sci. Adv. 8, eabm6624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Futamura, R. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Sankar, K. V. & Selvan, R. K. The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv. 4, 17555–17566 (2014).

    Article  CAS  Google Scholar 

  48. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Aricò, A. S. et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005).

    Article  PubMed  Google Scholar 

  50. Talyzin, A. V. et al. Brodie vs Hummers graphite oxides for preparation of multi-layered materials. Carbon 115, 430–440 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Xie from the group of D.W. at Beijing Institute of Nanoenergy and Nanosystems for their help with the computational studies. This work was supported by the Beijing Natural Science Foundation (grant number IS23040), the National Natural Science Foundation (grant number 62274101) and the Research Grants Council of the Hong Kong Special Administrative Region (grant numbers C6020-22G and C7001-22Y).

Author information

Authors and Affiliations

Authors

Contributions

D.W. and Z.L.W. proposed the idea and supervised the whole project. D.W., F.Y. and P.P. designed the experiment and performed the device fabrication and characterization. F.Y. and P.P. synthesized the samples. F.Y., P.P., X.L. and S.L. performed the corresponding measurements. Z.-Y.Y., H.F., H.L., T.-L.R. and Y.Z. performed the computational studies. D.W. and F.Y. wrote the paper. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Zhong Lin Wang or Di Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Notes 1–11, Tables 1–7, Figs. 1–36 and Refs. 1–59.

Supplementary Video 1

The vertical iontronic energy storage device can power a commercial electronic watch.

Supplementary Video 2

The vertical iontronic energy storage device can power a commercial electronic calculator.

Supplementary Video 3

The vertical iontronic energy storage device can power an electronic LCD screen.

Supplementary Video 4

The fabrication process of the vertical iontronic energy storage device.

Supplementary Data

Source data for Supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Peng, P., Yan, ZY. et al. Vertical iontronic energy storage based on osmotic effects and electrode redox reactions. Nat Energy 9, 263–271 (2024). https://doi.org/10.1038/s41560-023-01431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01431-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing