Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithium anode interlayer design for all-solid-state lithium-metal batteries



All-solid-state lithium-metal batteries (ASSLBs) have attracted intense interest due to their high energy density and high safety. However, Li dendrite growth and high interface resistance remain challenging due to insufficient understanding of the mechanism. Here we develop two types of porous lithiophobic interlayer (Li7N2I–carbon nanotube and Li7N2I–Mg) to enable Li to plate at the Li/interlayer interface and reversibly penetrate into the porous interlayer. The experimental and simulation results reveal that a balance of lithiophobicity, electronic and ionic conductivities and interlayer’s porosity are the key enablers for stable Li plating/stripping at a high capacity. A fine-tuned Li7N2I–carbon nanotube interlayer enables Li/LNI/Li symmetric cell to achieve a high critical current density of 4.0 mA cm−2 at 4.0 mAh cm−2 at 25 °C; the Li7N2I–Mg interlayer enables a Li4SiO4@LiNi0.8Mn0.1Co0.1O2/Li6PS5Cl/20 µm-Li full cell to achieve an areal capacity of 2.2 mAh cm−2, maintaining 82.4% capacity retention after 350 cycles at 60 °C at a rate of 0.5 C. The interlayer design principle opens opportunities to develop safe and high energy ASSLBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of Li/interlayer interface after cells assemble, Li nucleation, Li growth and Li stripping.
Fig. 2: Li stripping/plating behaviours in ionic conductive, mixed conductive and electronic conductive interlayers.
Fig. 3: Li dendrite suppression capability of mixed conductive LNI–CNT interlayers.
Fig. 4: Proposed design principle for Li dendrite suppression.
Fig. 5: Optimization of mixed conductive interlayer and full cell performance with a 20 µm lithium-metal anode.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files.


  1. Larcher, D. & Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Nunes, A., Woodley, L. & Rossetti, P. Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions. Nat. Sustain. 5, 527–532 (2022).

    Article  Google Scholar 

  3. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  4. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Bates, A. M. et al. Are solid-state batteries safer than lithium-ion batteries? Joule 6, 742–755 (2022).

    Article  CAS  Google Scholar 

  6. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  7. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  CAS  Google Scholar 

  8. Wang, Y., Dang, D., Wang, M., Xiao, X. & Cheng, Y. T. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation. Appl. Phys. Lett. 115, 043903 (2019).

    Article  Google Scholar 

  9. Cao, D. et al. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020).

    Article  Google Scholar 

  10. Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).

    Article  CAS  Google Scholar 

  11. Liu, H. et al. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5, 833–843 (2020).

    Article  CAS  Google Scholar 

  12. Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  13. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Han, F. D., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).

    Article  Google Scholar 

  16. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    Article  CAS  Google Scholar 

  17. Shen, F., Dixit, M. B., Xiao, X. & Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 3, 1056–1061 (2018).

    Article  CAS  Google Scholar 

  18. Venturi, V. & Viswanathan, V. Thermodynamic analysis of initial steps for void formation at lithium/solid electrolyte interphase interfaces. ACS Energy Lett. 7, 1953–1959 (2022).

    Article  CAS  Google Scholar 

  19. Tsai, C.-L. et al. Li7La3Zr2O12 interface modification for li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, C. et al. Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater. 8, 1701963 (2018).

    Article  Google Scholar 

  22. Tian, Y. et al. Li6.75La3Zr1.75Ta0.25O12@amorphous Li3OCl composite electrolyte for solid state lithium-metal batteries. Energy Storage Mater. 14, 49–57 (2018).

    Article  Google Scholar 

  23. You, Y. et al. Effect of charge non-uniformity on the lithium dendrites and improvement by the LiF interfacial layer. ACS Appl. Energy Mater. 5, 15078–15085 (2022).

    Article  CAS  Google Scholar 

  24. Ji, X. et al. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020).

    Article  CAS  Google Scholar 

  25. Wang, T. et al. A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci. 15, 1325–1333 (2022).

    Article  Google Scholar 

  26. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  27. Biswal, P., Stalin, S., Kludze, A., Choudhury, S. & Archer, L. A. Nucleation and early stage growth of Li electrodeposits. Nano Lett. 19, 8191–8200 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Jo, S. et al. The roles of nucleation and growth kinetics in determining Li metal morphology for Li metal batteries: columnar versus spherical growth. J. Mater. Chem. A 10, 5520–5529 (2022).

    Article  CAS  Google Scholar 

  29. Dickinson, E. J. F. & Wain, A. J. The Butler–Volmer equation in electrochemical theory: origins, value, and practical application. J. Electroanal. Chem. 872, 114145 (2020).

    Article  CAS  Google Scholar 

  30. Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, N. et al. Highly cyclable all-solid-state battery with deposition-type lithium metal anode based on thin carbon black layer. Adv. Sustain. Syst. 11, 2100066 (2021).

    Google Scholar 

  32. Kim, S. et al. High-power hybrid solid-state lithium–metal batteries enabled by preferred directional lithium growth mechanism. ACS Energy Lett. 8, 9–20 (2023).

    Article  CAS  Google Scholar 

  33. Wang, C. et al. Identifying soft breakdown in all-solid-state lithium battery. Joule 6, 1770–1781 (2022).

    Article  CAS  Google Scholar 

  34. Rebelo, S. L. H. et al. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 18, 12784–12796 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Guan, X. et al. Controlling nucleation in lithium metal anodes. Small 14, 1801423 (2018).

    Article  Google Scholar 

  36. Huang, C. J. et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO-type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  38. Obayashi, H., Gotoh, A. & Nagai, R. Composition dependence of lithium ionic conductivity in lithium nitride-lithium iodide system. Mat. Res. Bull. 16, 581–585 (1981).

    Article  CAS  Google Scholar 

  39. Lu, X. et al. Liquid–metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996).

    Article  CAS  Google Scholar 

  41. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  42. Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  43. Nose, S. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 103, 1–46 (1991).

    Article  MathSciNet  CAS  Google Scholar 

  44. Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 14, 3576–3586 (2014).

    Article  CAS  Google Scholar 

  45. Meng, D., Zheng, B., Lin, G. & Sushko, M. L. Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16, 1298–1322 (2014).

    Article  MathSciNet  Google Scholar 

  46. Wang, H., Thiele, A. & Pilon, L. Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: a generalized modified Poisson–Nernst–Planck model. J. Phys. Chem. C. 117, 18286–18297 (2013).

    Article  CAS  Google Scholar 

  47. Sommer, J. L. & Mortensen, A. Forced unidirectional infiltration of deformable porous media. J. Fluid Mech. 31, 193–217 (1996).

    Article  Google Scholar 

  48. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1, 27–34 (1949).

    Article  Google Scholar 

  49. Chen, L. et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J. Power Sources 300, 376–385 (2015).

    Article  CAS  Google Scholar 

Download references


This work was supported by the US Department of Energy (DOE) under award number DEEE0008856 (received by C.W.) and award number DE-AC05-76RL01830.

Author information

Authors and Affiliations



Z.W. designed and conducted the experiments, performed the calculations and analysed the data. J.X, X.J. and H.W. conducted the electrochemical experiments. J.X., J.Z. X.H. and W.Z. performed XRD, Raman, SEM and ToF-SIMS characterizations. Y.L. synthesized the LLZO. Z.W. wrote the draft manuscript. All authors revised the manuscript. C.W. conceived and supervised the project. All authors contributed to the interpretation of the results.

Corresponding authors

Correspondence to Hongli Wan or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Nagaphani Aetukuri, Nicolas Delaporte and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40, Tables 1–6 and Notes 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xia, J., Ji, X. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat Energy 9, 251–262 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing