Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C

Abstract

Polymers are key dielectric media for energy storage capacitors in power electronics for electric vehicles and solar panels, and there is an urgent need to enhance their discharged energy density (Ud) at high temperatures. Existing polymer–inorganic nanocomposites with high Ud cannot be produced by conventional roll-to-roll fabrication processes and exhibit compromised cyclic stability. In this study, we introduced phosphotungstic acid subnanosheets, a ‘reservoir’ for charges, into polymers to form a subnanocomposite. Even a low loading (0.2 wt%) of ultralarge, ultrathin, flexible subnanosheets was found to effectively strengthen polymers and hinder the propagation of breakdown paths. These subnanosheets can also trap charges through grafted surfactant molecules and polyoxometalate cluster backbones. An ultrahigh Ud of 7.2 J cm−3 with a charge–discharge efficiency of 90% and charge–discharge cycle stability up to 5 × 105 cycles at 200 °C were observed. Furthermore, a 100-metre-long roll of the subnanocomposite film was roll-to-roll fabricated on an industrial solution-casting production line. This work demonstrates the potential of this subnanocomposite strategy for the mass fabrication and application of high-performance polymer dielectrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of PWNSs and polymer–PWNS subnanocomposites.
Fig. 2: Mechanical strengthening and breakdown path hindrance of the PWNSs.
Fig. 3: Charge trapping and improved energy storage performance of the PWNSs.
Fig. 4: Reliability and industrial preparation of polymer–PWNS subnanocomposites.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).

    Article  CAS  Google Scholar 

  2. Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2022).

    Article  Google Scholar 

  3. Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, M., Ren, W., Guo, M. & Shen, Y. High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review. Small 18, 2205247 (2022).

    Article  CAS  Google Scholar 

  5. Li, H. et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019).

    Article  Google Scholar 

  6. Dong, J. et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    Article  CAS  Google Scholar 

  7. Ai, D. et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020).

    Article  CAS  Google Scholar 

  8. Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang, P. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33, 2103338 (2021).

    Article  CAS  Google Scholar 

  10. Li, H. et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. Infomat 2, 389–400 (2020).

    Article  CAS  Google Scholar 

  11. Zhou, Y. et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 28, 255–263 (2020).

    Article  Google Scholar 

  12. Wang, P. et al. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 32, 2204155 (2022).

    Article  CAS  Google Scholar 

  13. Shen, Z.-H. et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018).

    Article  Google Scholar 

  14. Zhang, X. et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30, 1707269 (2018).

    Article  Google Scholar 

  15. Zhang, S. M. et al. Chirality evolution from sub-1 nanometer nanowires to the macroscopic helical structure. J. Am. Chem. Soc. 142, 1375–1381 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H., Gong, Q., Yue, Y., Guo, L. & Wang, X. Sub-1 nm nanowire based superlattice showing high strength and low modulus. J. Am. Chem. Soc. 139, 8579–8585 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, D. R., Zuo, S. W., Yang, H. Z. & Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 11, 2100272 (2021).

    Article  CAS  Google Scholar 

  18. Liu, J. et al. Hybrid MoO3–polyoxometallate sub-1 nm nanobelt superstructures. J. Am. Chem. Soc. 142, 17557–17563 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, S. M. et al. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide–polyoxometalate heterostructures. Adv. Mater. 33, e2100576 (2021).

    Article  PubMed  Google Scholar 

  20. Liu, J. L., Shi, W. X. & Wang, X. ZnO–POM cluster sub-1 nm nanosheets as robust catalysts for the oxidation of thioethers at room temperature. J. Am. Chem. Soc. 143, 16217–16225 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, J. L., Shi, W. X. & Wang, X. Cluster–nuclei coassembled into two-dimensional hybrid CuO–PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 141, 18754–18758 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, S., Shi, W. & Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Liu, Q. & Wang, X. Polyoxometalate clusters: sub-nanometer building blocks for construction of advanced materials. Matter 2, 816–841 (2020).

    Article  Google Scholar 

  24. Ni, B., Shi, Y. & Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 30, 1802031 (2018).

    Article  Google Scholar 

  25. Meng, N. et al. Multiscale understanding of electric polarization in poly(vinylidene fluoride)-based ferroelectric polymers. J. Mater. Chem. C. 8, 16436–16442 (2020).

    Article  CAS  Google Scholar 

  26. Di Giorgio, C. et al. Mechanical, elastic, and adhesive properties of two-dimensional materials: from straining techniques to state-of-the-art local probe measurements. Adv. Mater. Interfaces 9, 2102220 (2022).

    Article  Google Scholar 

  27. Yang, Y. et al. Brittle fracture of 2D MoSe2. Adv. Mater. 29, 1604201 (2017).

    Article  Google Scholar 

  28. Cooper, R. C. et al. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys. Rev. B 87, 035423 (2013).

    Article  ADS  Google Scholar 

  29. Liu, K. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ren, L. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021).

    Article  CAS  Google Scholar 

  31. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  32. Casan-Pastor, N., Gomez-Romero, P., Jameson, G. B. & Baker, L. C. W. Crystal structures of α-[CoIIW12O40]6− and its heteropoly blue 2e reduction product, α-[CoIIW12O40]8−. Structural, electronic, and chemical consequences of electron delocalization in a multiatom mixed-valence system. J. Am. Chem. Soc. 113, 5658–5663 (1991).

    Article  CAS  Google Scholar 

  33. Horn, M. R. et al. Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy Environ. Sci. 14, 1652–1700 (2021).

    Article  CAS  Google Scholar 

  34. Cao, X. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nat. Catal. 1, 704–710 (2018).

    Article  CAS  Google Scholar 

  35. Ren, Z. et al. Surface oxygen vacancies confined by ferroelectric polarization for tunable CO oxidation kinetics. Adv. Mater. 34, 2202072 (2022).

    Article  CAS  Google Scholar 

  36. Kopelent, R. et al. Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew. Chem. Int. Ed. 54, 8728–8731 (2015).

    Article  CAS  Google Scholar 

  37. Vella, N. & Toureille, A. Space charge behavior of different PEI observed by the coupling of thermal step method and TSDC method. In Proc. IEEE Conference on Electrical Insulation and Dielectric Phenomena 84–87 (IEEE, 1997).

  38. Tian, F. et al. Theory of modified thermally stimulated current and direct determination of trap level distribution. J. Electrostat. 69, 7–10 (2011).

    Article  Google Scholar 

  39. Sun, B. et al. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 18, 2202421 (2022).

    Article  CAS  Google Scholar 

  40. Kim, G.-H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thakur, Y. et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992–10997 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L. et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 33, 2102392 (2021).

    Article  CAS  Google Scholar 

  44. Dai, Z. et al. Scalable polyimide–poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv. Mater. 34, 2101976 (2021).

    Article  Google Scholar 

  45. Zhang, M. et al. Terahertz characterization of lead-free dielectrics for different applications. ACS Appl. Mater. Interfaces 13, 53492–53503 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article  CAS  Google Scholar 

  47. Qin, H. et al. High-temperature polymer dielectrics with superior capacitive energy storage performance. Chem. Eng. J. 461, 142068 (2023).

    Article  CAS  Google Scholar 

  48. Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Y., Zhu, Y., Xu, W. & Wang, Q. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv. Energy Mater. 13, 2203961 (2023).

    Article  CAS  Google Scholar 

  50. Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Yang, M. et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).

    Article  CAS  Google Scholar 

  53. Dong, J. et al. Scalable polyimide–organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 35, 2211487 (2023).

    Article  CAS  Google Scholar 

  54. Li, H. et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ren, W. et al. Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage. Adv. Mater. 34, 2207421 (2022).

    Article  CAS  Google Scholar 

  56. Pan, Z. et al. Tailoring poly(styrene‐co‐maleic anhydride) networks for all‐polymer dielectrics exhibiting ultrahigh energy density and charge–discharge efficiency at elevated temperatures. Adv. Mater. 35, 2207580 (2022).

    Article  Google Scholar 

  57. Frisch, M. J. et al. Gaussian 16 Rev. C.01 (Wallingford, 2016).

  58. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  ADS  CAS  Google Scholar 

  59. Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  ADS  CAS  Google Scholar 

  60. Petersson, G. A. & Allaham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991).

    Article  ADS  CAS  Google Scholar 

  61. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  62. Wadt, W. R. & Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985).

    Article  ADS  CAS  Google Scholar 

  63. Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    Article  ADS  CAS  Google Scholar 

  64. Malde, A. K. et al. An Automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7, 4026–4037 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Stroet, M. et al. Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J. Chem. Theory Comput. 14, 5834–5845 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Schuttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D 60, 1355–1363 (2004).

    Article  ADS  PubMed  Google Scholar 

  67. van Gunsteren, W. F. Biomolecular Simulation: The GROMOS96 Manual and User Guide (vdf Hochschulverlag AG an der ETH Zurich, 1996).

  68. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Van der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  PubMed  Google Scholar 

  70. Lindahl, E., Hess, B. & van der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001).

    Article  CAS  Google Scholar 

  71. Oostenbrink, C., Villa, A., Mark, A. E. & Van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).

    Article  ADS  CAS  Google Scholar 

  73. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  CAS  Google Scholar 

  74. Delley, B. An all‐electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  ADS  CAS  Google Scholar 

  75. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52388201 (C.-W.N.), 52027817 (Y.S.), 52002207 (W.R.), 92261118 (W.S.), 22241502 (X.W.), 22250710677 (X.W.) and 22035004 (X.W.)).

Author information

Authors and Affiliations

Authors

Contributions

M.Y., X.W. and Y.S. conceived the idea. M.Y. performed the majority of the experiments. H.L. and Z.L. synthesized and characterized the PWNS. J.W. performed the phase-field simulations under the supervision of Z.S. W.S. performed the molecular dynamics simulations. Q.Z and L.G. performed the EELS characterizations. H.X. performed the finite element simulations under the supervision of X.L. W.R. and M.Z. assisted in the sample preparation and performance tests. N.S. assisted in the fitting and analysis of TSDC data. M.G. and L.Z. assisted in the data analysis and writing of the paper. Y.X. prepared the TEM samples. E.X. performed the SKPM characterizations. B.S., J.P. and J.J. prepared the large-scale film samples. C.-W.N., X.W. and Y.S. supervised the whole project.

Corresponding authors

Correspondence to Xun Wang or Yang Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Alamgir Karim, Qing Wang and Haixue Yan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46 and Tables 1 and 2.

Source data

Source Data Fig. 2

All data points in Fig. 2, and the raw data for the statistical analysis in Fig. 2c.

Source Data Fig. 3

All data points in Fig. 3.

Source Data Fig. 4

All data points in Fig. 4, and the raw data for the statistical analysis in Fig. 4g.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, H., Wang, J. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat Energy 9, 143–153 (2024). https://doi.org/10.1038/s41560-023-01416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01416-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing