Author Correction:Surface in situ reconstruction of inorganic perovskite films enablinglong carrier lifetimes and solar cells with 21\% efficiency

Abstract

Correction to: Nature Energy https://doi.org/ 10.1038/s41560-023-01220-z. Published online 16 March 2023.

https://doi.org/10.1038/s41560-023-01337-1
Published online: 25 July 2023
Check for updates

Xinbo Chu, Qiufeng Ye, Zhenhan Wang, Chen Zhang, Fei Ma, Zihan Qu, Yang Zhao, Zhigang Yin, Hui-Xiong Deng © , Xingwang Zhang © \& Jingbi You ©

In the version of this article initially published, y-axis tick marks and units for intensity were not included in Fig. 1a,b. In addition, text was missing after the second sentence of the "Film characterization" section of Methods: "Time-resolved PL spectra were measured by F900 spectrometer with a 375 nm pulsed laser (EPL-375). In the TRPL spectra test, a 377 nm picosecond laser (Edinburgh Instruments EPL-375) was used to excite both the control and target samples. The excitation pulse width was 55 ps with a repetition rate of 200 KHz . The laser spot size was $0.05 \mathrm{~cm}^{2}$ and the fluence was around $0.5 \mu \mathrm{~J} / \mathrm{cm}^{2}$. The TRPL was conducted in the mode of time-correlated single photon counting (TCSPC), which is commonly used to test the fluorescence decay lifetime from $10 \mathrm{ps}-50 \mu \mathrm{~s}$." The Methods and Fig. 1 have been updated in the HTML and PDF versions of the article.
© The Author(s), under exclusive licence to Springer Nature Limited 2023

