Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Insights into advanced models for energy poverty forecasting

This article has been updated

The growing importance of long-term planning in European Union member states’ energy poverty policies makes it necessary to develop forecasting techniques to support related policy decision-making. The combination of machine learning and econometrics holds promise in the field provided that several crucial challenges are tackled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Change history

  • 01 March 2024

    In the version of the article initially published, the sentence “Long-term projections of economic indicators may be obtained by aligning energy poverty forecasting models with models such as EUROMOD” was updated for clarity.


  1. Thomson, H., Bouzarovski, S. & Snell, C. Indoor Built Environ. 26, 879–901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Petropoulos, F. et al. Int. J. Forecasting 38, 705–871 (2022).

    Article  Google Scholar 

  3. López-Vargas, A., Ledezma-Espino, A. & Sanchis-de-Miguel, A. Energy Build. 268, 112233 (2022).

  4. Bienvenido-Huertas, D., Sánchez-García, D., Rubio-Bellido, C. & Pulido-Arcas, J. A. Energy 237, 121636 (2021).

  5. Carfora, A., Scandurra, G. & Thomas, A. Energy Policy 161, 112597 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Rajić, M. N. et al. Energy Environ. 31, 1448–1472 (2020).

    Article  Google Scholar 

  7. van Hove, W., Dalla Longa, F. & van der Zwaan, B. Energy Build. 264, 112064 (2022).

    Article  Google Scholar 

  8. Bienvenido-Huertas, D., Pulido-Arcas, J. A., Rubio-Bellido, C. & Pérez-Fargallo, A. Sustainability 13, 1–30 (2021).

    Article  Google Scholar 

  9. Primc, K., Slabe-Erker, R. & Majcen, B. Energy Policy 128, 727–734 (2019).

    Article  Google Scholar 

  10. Sareen, S. et al. Global Transit. 2, 26–36 (2020).

    Article  Google Scholar 

  11. Ziel, F. & Steinert, R. Renew. Sust. Energ. Rev. 94, 251–266 (2018).

    Article  Google Scholar 

  12. Wei, N., Li, C., Peng, X., Zeng, F. & Lu, X. J. Pet. Sci. Eng. 181, 106187 (2019).

    Article  CAS  Google Scholar 

  13. European Green Deal: EU Agrees Stronger Rules to Boost Energy Efficiency IP/23/1581 (European Commission, 2023).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kaja Primc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Garibay, M., Primc, K. & Slabe-Erker, R. Insights into advanced models for energy poverty forecasting. Nat Energy 8, 903–905 (2023).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing