Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems

Abstract

Operating stability has become a priority issue for all-perovskite tandem solar cells. Inorganic CsPbI3−xBrx perovskites, which have good photostability against halide segregation, are promising alternatives for all-perovskite tandem solar cells. However, the interface between organic transport layers and inorganic perovskite suffers from a large energetic mismatch and inhibits charge extraction compared with hybrid analogues, resulting in low open-circuit voltages and fill factors. Here we show that inserting at this interface a passivating dipole layer having high molecular polarity—a molecule that interacts strongly with both inorganic perovskite and C60—reduces the energetic mismatch and accelerates the charge extraction. This strategy resulted in a power conversion efficiency (PCE) of 18.5% in wide-bandgap (WBG) devices. We report all-perovskite tandems using an inorganic WBG subcell, achieving a PCE of 25.6% (steady state 25.2%). Encapsulated tandems retain 96% of their initial performance after 1,000 h of simulated 1-sun operation at the maximum power point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Density functional theory calculations of surface passivation and interfacial charge transport.
Fig. 2: PV performance of CsPbI3–xBrx perovskite solar cells with dipole layers.
Fig. 3: Characterization of CsPbI3−xBrx perovskite films.
Fig. 4: PL properties of perovskite films with different dipole layers.
Fig. 5: Performance of monolithic all-perovskite tandem solar cells.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are included in the published article and its Supplementary Information and source data files. Source data are provided with this paper.

References

  1. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2022).

    Article  Google Scholar 

  2. Wang, C. et al. A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7, 744–753 (2022).

    Article  Google Scholar 

  3. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article  Google Scholar 

  4. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).

    Article  Google Scholar 

  5. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  Google Scholar 

  6. Best Research-Cell Efficiencies (NREL, accessed 23 January 2023); https://www.nrel.gov/pv/cell-efficiency.html

  7. Wang, D., Wright, M., Elumalai, N. K. & Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016).

    Article  Google Scholar 

  8. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  Google Scholar 

  9. Zhou, W. et al. Light-independent ionic transport in inorganic perovskite and ultrastable Cs-based perovskite solar cells. J. Phys. Chem. Lett. 8, 4122–4128 (2017).

    Article  Google Scholar 

  10. Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028–1033 (2017).

    Article  Google Scholar 

  11. Afsari, M., Boochani, A. & Shirdel, F. Electronic and optical properties of two propounded compound in photovoltaic applications, CsPbI3 and CH3NH3PbI3: by DFT. Optik 199, 163360 (2019).

    Article  Google Scholar 

  12. Balakrishna, R. G., Kobosko, S. M. & Kamat, P. V. Mixed halide perovskite solar cells. Consequence of iodide treatment on phase segregation recovery. ACS Energy Lett. 3, 2267–2272 (2018).

    Article  Google Scholar 

  13. Bush, K. A. et al. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018).

    Article  Google Scholar 

  14. Di Girolamo, D. et al. Ion migration-induced amorphization and phase segregation as a degradation mechanism in planar perovskite solar cells. Adv. Energy Mater. 10, 2000310 (2020).

    Article  Google Scholar 

  15. Ho-Baillie, A., Zhang, M., Lau, C. F. J., Ma, F. J. & Huang, S. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3, 938–955 (2019).

    Article  Google Scholar 

  16. Wang, J. et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 177 (2020).

    Article  Google Scholar 

  17. Fu, S. et al. Tailoring in situ healing and stabilizing post-treatment agent for high-performance inverted CsPbI3 perovskite solar cells with efficiency of 16.67%. ACS Energy Lett. 5, 3314–3321 (2020).

    Article  Google Scholar 

  18. Zeng, Q. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018).

    Article  Google Scholar 

  19. Zeng, Z. et al. In situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells. Adv. Energy Mater. 8, 1801050 (2018).

    Article  Google Scholar 

  20. Li, T. et al. Cesium acetate-assisted crystallization for high-performance inverted CsPbI3 perovskite solar cells. Nanotechnology 33, 375205 (2022).

    Article  Google Scholar 

  21. Wang, K. et al. Rapid nucleation and slow crystal growth of CsPbI3 films aided by solvent molecular sieve for perovskite photovoltaics. Adv. Energy Mater. 12, 2201274 (2022).

    Article  Google Scholar 

  22. Zhang, J. et al. Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells. Adv. Mater. 33, 2103770 (2021).

    Article  Google Scholar 

  23. Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2017).

    Article  Google Scholar 

  24. Ye, Q. et al. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31, 1905143 (2019).

    Article  Google Scholar 

  25. Liu, C. et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules. Adv. Mater. 32, 1907361 (2020).

    Article  Google Scholar 

  26. Chang, X. et al. Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy. Adv. Mater. 32, 2001243 (2020).

    Article  Google Scholar 

  27. Cho, A. N. & Park, N. G. Impact of interfacial layers in perovskite solar cells. ChemSusChem 10, 3687–3704 (2017).

    Article  Google Scholar 

  28. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    Article  Google Scholar 

  29. Xu, W. et al. Minimizing voltage loss in efficient all-inorganic CsPbI2Br perovskite solar cells through energy level alignment. ACS Energy Lett. 4, 2491–2499 (2019).

    Article  Google Scholar 

  30. Wang, H., Yuan, J., Xi, J., Du, J. & Tian, J. Multiple-function surface engineering of SnO2 nanoparticles to achieve efficient perovskite solar cells. J. Phys. Chem. Lett. 12, 9142–9148 (2021).

    Article  Google Scholar 

  31. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  Google Scholar 

  32. Luo, D., Li, X., Dumont, A., Yu, H. & Lu, Z. H. Recent progress on perovskite surfaces and interfaces in optoelectronic devices. Adv. Mater. 33, 2006004 (2021).

    Article  Google Scholar 

  33. Duan, J. et al. Effect of side-group-regulated dipolar passivating molecules on CsPbBr3 perovskite solar cells. ACS Energy Lett. 6, 2336–2342 (2021).

    Article  Google Scholar 

  34. Tan, S. et al. Effect of high dipole moment cation on layered 2D organic–inorganic halide perovskite solar cells. Adv. Energy Mater. 9, 1803024 (2019).

    Google Scholar 

  35. Xue, J. et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021).

    Article  Google Scholar 

  36. Lin, Y. et al. π-conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 29, 1604545 (2017).

    Article  Google Scholar 

  37. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  Google Scholar 

  38. Gao, F., Zhao, Y., Zhang, X. & You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 10, 1902650 (2020).

    Article  Google Scholar 

  39. Li, B. et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl. Mater. Interfaces 10, 32471–32482 (2018).

    Article  Google Scholar 

  40. Liu, X. Y. et al. Spin-orbit coupling accelerates the photoinduced interfacial electron transfer in a fullerene-based perovskite heterojunction. J. Phys. Chem. Lett. 12, 1131–1137 (2021).

    Article  Google Scholar 

  41. Canil, L. et al. Tuning halide perovskite energy levels. Energy Environ. Sci. 14, 1429–1438 (2021).

    Article  Google Scholar 

  42. Leung, C., Kao, L., Su, S., Feng, J. & Chan, T. Relationship between surface dipole, work function and charge transfer: some exceptions to an established rule. Phys. Rev. B 68, 195408 (2003).

    Article  Google Scholar 

  43. Cui, Y. et al. A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2 V. Adv. Mater. 34, 2205028 (2022).

    Article  Google Scholar 

  44. Zhang, H. et al. Fluorine-containing passivation layer via surface chelation for inorganic perovskite solar cells. Angew. Chem. Int. Ed. 62, e202216634 (2022).

    Article  Google Scholar 

  45. Wang, C. et al. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater. 7, 1700414 (2017).

    Article  Google Scholar 

  46. Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    Article  Google Scholar 

  47. Cai, Y. et al. Graded 2D/3D (CF3-PEA)2FA0.85MA0.15Pb2I7/FA0.85MA0.15PbI3 heterojunction for stable perovskite solar cell with an efficiency over 23.0%. J. Energy Chem. 65, 480–489 (2022).

    Article  Google Scholar 

  48. Liu, T. et al. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 31, 2009515 (2021).

    Article  Google Scholar 

  49. Wang, Y. et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018).

    Article  Google Scholar 

  50. Almora, O. et al. Quantifying the absorption onset in the quantum efficiency of emerging photovoltaic devices. Adv. Energy Mater. 11, 2100022 (2021).

    Article  Google Scholar 

  51. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Google Scholar 

  52. Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  Google Scholar 

  53. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  Google Scholar 

  54. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  Google Scholar 

  55. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  56. Wang, X., Wang, Y., Chen, Y., Liu, X. & Zhao, Y. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, 2103688 (2021).

    Article  Google Scholar 

  57. Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

    Article  Google Scholar 

  58. Wang, Y., Zhang, T., Kan, M. & Zhao, Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018).

    Article  Google Scholar 

  59. Gil-Escrig, L. et al. Efficient wide-bandgap mixed-cation and mixed-halide perovskite solar cells by vacuum deposition. ACS Energy Lett. 6, 827–836 (2021).

    Article  Google Scholar 

  60. Chen, C. et al. Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 90, 106608 (2021).

    Article  Google Scholar 

  61. Kresse, G. J. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Chem. A 54, 11169–11186 (1996).

    Google Scholar 

  62. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  63. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  Google Scholar 

  64. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  Google Scholar 

  65. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B Condens. 82, 081101 (2010).

    Article  Google Scholar 

  66. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  Google Scholar 

  67. Burgelman, M., Nollet, P. & Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000).

    Article  Google Scholar 

  68. Han, Q. et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Sci. Bull. 64, 1399–1401 (2019).

    Article  Google Scholar 

  69. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  Google Scholar 

  70. Belisle, R. A. et al. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths. Energy Environ. Sci. 10, 192–204 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFB4200304), National Natural Science Foundation of China (U21A2076 and 61974063), Natural Science Foundation of Jiangsu Province (BE2022021, BE2022026, BK20202008, BK20190315), the Technology Innovation Fund of Nanjing University, Fundamental Research Funds for the Central Universities (0213/14380206; 0205/14380252), Frontiers Science Center for Critical Earth Material Cycling Fund (DLTD2109) and Program for Innovative Talents and Entrepreneur in Jiangsu. The work at University of Toronto was supported by the US Department of the Navy, Office of Naval Research (N00014-20-1-2572). J. Xu acknowledges SciNet, which is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, for providing the computing resources for DFT simulations.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the idea and directed the overall project. T.L. and C.D. fabricated all the inorganic perovskite devices and conducted the characterization. J. Xu carried out the DFT simulation. S.T. performed SCAPS simulations. K.X. helped on ALD processing. R.L. and P.W. helped on the fabrication of NBG subcells. S.J., S.X. and Q.B. performed the UPS measurements. H. Li, Z.L., B.C., H. Luo, S.W., Y.T., L.L., X.G. and J. Xie helped on the material characterization. H.T. and E.H.S. supervised the work. H.T., T.L. and J. Xu wrote the draft paper, and S.T., H. Li, Q.Z., B.C., L.L., X.G. and E.H.S. improved the paper. All authors read and commented on the paper.

Corresponding authors

Correspondence to Edward H. Sargent or Hairen Tan.

Ethics declarations

Competing interests

Hairen Tan is the founder, chief scientific officer and chairman of Renshine Solar Co., Ltd., a company that is commercializing perovskite PVs. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Junfeng Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–8, Notes 1 and 2 and Refs. 1–25.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 4.

Supplementary Data 2

Source data for Supplementary Fig. 6.

Supplementary Data 3

Source data for Supplementary Fig. 9.

Supplementary Data 4

Source data for Supplementary Fig. 22.

Source data

Source Data Fig. 2

Source data for Fig. 2a,c.

Source Data Fig. 5

Source data for Fig. 5c,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Xu, J., Lin, R. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy 8, 610–620 (2023). https://doi.org/10.1038/s41560-023-01250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01250-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing