Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ monitoring redox processes in energy storage using UV–Vis spectroscopy

Abstract

Understanding energy storage mechanisms in electrochemical energy storage devices lays the foundations for improving their energy and power density. Here we introduce in situ ultraviolet–visible (UV–Vis) spectroscopy method to distinguish battery-type, pseudocapacitive and electrical double-layer charge storage processes. On the basis of Ti3C2Tx MXene in aqueous acidic and neutral electrolytes, and lithium titanium oxide in an organic electrolyte, we found a correlation between the evolution of UV–Vis spectra and the charge storage mechanism. The electron transfer number for Ti3C2Tx in an acidic electrolyte was calculated using quantitative analysis, which was close to previous measurements using X-ray absorption spectroscopy. Further, we tested the methodology to distinguish the non-Faradaic process in Ti3C2Tx MXene in a water-in-salt electrolyte, despite well-defined peaks in cyclic voltammograms. In situ UV–Vis spectroscopy is a fast and cost-effective technique that effectively supplements electrochemical characterization to track changes in oxidation state and materials chemistry and determine the charge storage mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The setup for in situ electrochemical UV–Vis spectroscopy.
Fig. 2: Electrochemical CV curves, reconstructed CV curves and in situ electrochemical UV–Vis spectra.
Fig. 3: Correlation between in situ UV–Vis spectra and electrochemical results.
Fig. 4: Comparison of electrochemical and UV–Vis CV curves of selected electrochemical systems collected using the CV method.
Fig. 5: EDL and surface redox contributions to the total charge for Ti3C2Tx in different electrolytes.
Fig. 6: Schematic illustrating the difference of mechanisms of charge storage by Ti3C2Tx in different electrolytes.

Similar content being viewed by others

Data availability

All relevant data are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  2. Reddy, A. L. M., Gowda, S. R., Shaijumon, M. M. & Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 24, 5045–5064 (2012).

    Article  Google Scholar 

  3. Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

    Article  Google Scholar 

  4. Fleischmann, S. et al. Continuous transition from double-layer to faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article  Google Scholar 

  5. Boyd, S. et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 20, 1689–1694 (2021).

    Article  Google Scholar 

  6. Nikitina, V. A., Vassiliev, S. Y. & Stevenson, K. J. Metal-ion coupled electron transfer kinetics in intercalation-based transition metal oxides. Adv. Energy Mater. 10, 1903933 (2020).

    Article  Google Scholar 

  7. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article  Google Scholar 

  8. Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

    Article  Google Scholar 

  9. Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article  Google Scholar 

  10. Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).

    Article  Google Scholar 

  11. Meng, C. et al. In situ and operando characterizations of 2D materials in electrochemical energy storage devices. Small Sci. 1, 2000076 (2021).

    Article  Google Scholar 

  12. Lu, J., Wu, T. & Amine, K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat. Energy 2, 17011 (2017).

    Article  Google Scholar 

  13. Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article  Google Scholar 

  14. Liu, X. et al. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022).

    Article  Google Scholar 

  15. Bagge-Hansen, M. et al. Potential-induced electronic structure changes in supercapacitor electrodes observed by in operando soft X-ray spectroscopy. Adv. Mater. 27, 1512–1518 (2015).

    Article  Google Scholar 

  16. Cuisinier, M. et al. Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 3227–3232 (2013).

    Article  Google Scholar 

  17. Lukatskaya, M. R. et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 1500589 (2015).

    Article  Google Scholar 

  18. Richey, F. W., Dyatkin, B., Gogotsi, Y. & Elabd, Y. A. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J. Am. Chem. Soc. 135, 12818–12826 (2013).

    Article  Google Scholar 

  19. Chen, D. et al. Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem. Mater. 27, 6608–6619 (2015).

    Article  Google Scholar 

  20. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  Google Scholar 

  21. Braun, A., Kubatova, A., Wirick, S. & Mun, S. B. Radiation damage from EELS and NEXAFS in diesel soot and diesel soot extracts. J. Electron. Spectrosc. Relat. Phenom. 170, 42–48 (2009).

    Article  Google Scholar 

  22. Wu, Y. & Liu, N. Visualizing battery reactions and processes by using in situ and in operando microscopies. Chem 4, 438–465 (2018).

    Article  Google Scholar 

  23. Tripathi, A. M., Su, W.-N. & Hwang, B. J. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018).

    Article  Google Scholar 

  24. Gribkova, O. L. & Nekrasov, A. A. Spectroelectrochemistry of electroactive polymer composite materials. Polymers 14, 3201 (2022).

    Article  Google Scholar 

  25. Kim, Y.-S. et al. Evidencing fast, massive, and reversible H+ insertion in nanostructured TiO2 electrodes at neutral pH. Where do protons come from? J. Phys. Chem. C 121, 10325–10335 (2017).

    Article  Google Scholar 

  26. Merryweather, A. J. et al. Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes. Nat. Mater. 21, 1306–1313 (2022).

    Article  Google Scholar 

  27. Merryweather, A. J., Schnedermann, C., Jacquet, Q., Grey, C. P. & Rao, A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 594, 522–528 (2021).

    Article  Google Scholar 

  28. Vaněčková, E. et al. UV/VIS spectroelectrochemistry with 3D printed electrodes. J. Electroanal. Chem. 857, 113760 (2020).

    Article  Google Scholar 

  29. Kaim, W. & Fiedler, J. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38, 3373–3382 (2009).

    Article  Google Scholar 

  30. Hu, S. et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat. Commun. 11, 2518 (2020).

    Article  Google Scholar 

  31. Brasiliense, V. et al. Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles. Angew. Chem. Int. Ed. 56, 10598–10601 (2017).

    Article  Google Scholar 

  32. Guerrette, J. P., Percival, S. J. & Zhang, B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135, 855–861 (2013).

    Article  Google Scholar 

  33. Jiang, D. et al. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J. Am. Chem. Soc. 139, 186–192 (2017).

    Article  Google Scholar 

  34. Evans, R. C. et al. Quantifying capacitive-like and battery-like charge storage contributions using single-nanoparticle electro-optical imaging. ChemElectroChem 7, 753–760 (2020).

    Article  Google Scholar 

  35. Niu, B. et al. Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors. Nat. Commun. 13, 2316 (2022).

    Article  Google Scholar 

  36. Darmawi, S. et al. Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys. Chem. Chem. Phys. 17, 15903–15911 (2015).

    Article  Google Scholar 

  37. Lu, H.-C., Zydlewski, B. Z., Tandon, B., Shubert-Zuleta, S. A. & Milliron, D. J. Understanding the role of charge storage mechanisms in the electrochromic switching kinetics of metal oxide nanocrystals. Chem. Mater. 34, 5621–5633 (2022).

    Article  Google Scholar 

  38. Mateos, M., Makivic, N., Kim, Y.-S., Limoges, B. & Balland, V. Accessing the two-electron charge storage capacity of MnO2 in mild aqueous electrolytes. Adv. Energy Mater. 10, 2000332 (2020).

    Article  Google Scholar 

  39. Kim, Y. S., Harris, K. D., Limoges, B. & Balland, V. On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chem. Sci. 10, 8752–8763 (2019).

    Article  Google Scholar 

  40. Patel, M. U. & Dominko, R. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries. ChemSusChem 7, 2167–2175 (2014).

    Article  Google Scholar 

  41. Valurouthu, G. et al. Tunable electrochromic behavior of titanium-based MXenes. Nanoscale 12, 14204–14212 (2020).

    Article  Google Scholar 

  42. Shao, H., Lin, Z., Xu, K., Taberna, P.-L. & Simon, P. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Stor. Mater. 18, 456–461 (2019).

    Google Scholar 

  43. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    Article  Google Scholar 

  44. Sun, X., Radovanovic, P. V. & Cui, B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. N. J. Chem. 39, 38–63 (2015).

    Article  Google Scholar 

  45. Joshi, Y., Saksena, A., Hadjixenophontos, E., Schneider, J. M. & Schmitz, G. Electrochromic behavior and phase transformation in Li4+xTi5O12 upon lithium-ion deintercalation/intercalation. ACS Appl. Mater. Interfaces 12, 10616–10625 (2020).

    Article  Google Scholar 

  46. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  Google Scholar 

  47. Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2020).

    Article  Google Scholar 

  48. Salles, P. et al. Electrochromic effect in titanium carbide MXene thin films produced by dip‐coating. Adv. Funct. Mater. 29, 1809223 (2019).

    Article  Google Scholar 

  49. Li, M. et al. Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum. Appl. Phys. Lett. 115, 073902 (2019).

    Article  Google Scholar 

  50. Scharner, S., Weppner, W. & Schmid‐Beurmann, P. Evidence of two‐phase formation upon lithium insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc. 146, 857–861 (1999).

    Article  Google Scholar 

  51. Li, H. & Elezzabi, A. Y. Simultaneously enabling dynamic transparency control and electrical energy storage via electrochromism. Nanoscale Horiz. 5, 691–695 (2020).

    Article  Google Scholar 

  52. Peng, J. et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 34, 2108384 (2022).

    Article  Google Scholar 

  53. Li, R. et al. Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12, 1587 (2021).

    Article  Google Scholar 

  54. Yan, C. et al. Stretchable and wearable electrochromic devices. ACS Nano 8, 316–322 (2014).

    Article  Google Scholar 

  55. Chen, J.-Z., Ko, W.-Y., Yen, Y.-C., Chen, P.-H. & Lin, K.-J. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633–6639 (2012).

    Article  Google Scholar 

  56. Shao, H. et al. Unraveling the charge storage mechanism of Ti3C2Tx MXene electrode in acidic electrolyte. ACS Energy Lett. 5, 2873–2880 (2020).

    Article  Google Scholar 

  57. Anayee, M. et al. Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti3C2Tx MXene. Chem. Commun. 56, 6090–6093 (2020).

    Article  Google Scholar 

  58. Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886–887 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science and Office of Basic Energy Sciences. D.Z. and Y.G. also acknowledge funding for MXene synthesis from NSF Grant DMR-2041050.

Author information

Authors and Affiliations

Authors

Contributions

D.Z., X.W. and Y.G. planned the research. D.Z. R.W. and X.W. designed the experiments. D.Z. synthesized and characterized all materials, performed in situ experiments and analysed data. R.W. developed in situ data anaylsis tools and protocols. D.Z. wrote the paper and R.W., X.W. and Y.G. edited and reviewed the paper.

Corresponding authors

Correspondence to Xuehang Wang or Yury Gogotsi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Obaidallah Munteshari, Jean-Marie Tarascon and Wei Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–7 and Table 1.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wang, R.(., Wang, X. et al. In situ monitoring redox processes in energy storage using UV–Vis spectroscopy. Nat Energy 8, 567–576 (2023). https://doi.org/10.1038/s41560-023-01240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01240-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing