Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design

Abstract

Critical current density (CCD) is currently used to evaluate Li dendrite-suppression capability of solid-state electrolytes (SSEs). However, CCD values vary with engineering parameters, resulting in a large deviation of CCD values for the same SSE. Herein we evaluate lithium dendrite-suppression capability of SSEs using critical interphase overpotential (CIOP). The CIOP is the intrinsic property of the interphase, which depends on electronic/ionic conductivity, lithiophobicity and mechanical strength. When the applied interphase overpotential (AIOP) is larger than CIOP, Li will grow into interphase as dendrites. To reduce AIOP but increase CIOP, we design a mix-conductive Li2NH-Mg interlayer between Li6PS5Cl SSE and Li-1.0 wt% La anode, which transfers into Li6PS5Cl/LiMgSx/LiH-Li3N/LiMgLa after Mg migration during annealing and activation cycles. The LiMgSx interphase increases the CIOP from ~10 mV (for Li6PS5Cl) to ~220 mV. The Li plates on the LiMgLa surface, and reversible penetration into formed porous LiH-Li3N reduces AIOP. The CIOP provides a design guideline for high-energy and room temperature all-solid-state lithium-metal batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CIOP definition, designing principle and the realization of lithium dendrite-free interlayer.
Fig. 2: Ion and element distribution, morphology of interlayer with Li anode and Li6PS5Cl electrolyte.
Fig. 3: CIOP and CCD of Li6PS5Cl electrolyte with Li2NH-Mg interlayer inserted between Li-1.0 wt% La and Li6PS5Cl.
Fig. 4: Electrochemical performance of NMC622/Li3YCl6/Li6PS5Cl/Li2NH-Mg/Li-1.0 wt% La cell.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Ren, Y., Shen, Y., Lin, Y. & Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  Google Scholar 

  2. Bay, M. C. et al. Sodium plating from Na‐β″‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Adv. Energy Mater. 10, 1902899 (2019).

    Article  Google Scholar 

  3. Han, F., Yue, J., Zhu, X. & Wang, C. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater. 8, 1703644 (2018).

    Article  Google Scholar 

  4. Suyama, M., Kato, A., Sakuda, A., Hayashi, A. & Tatsumisago, M. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 286, 158–162 (2018).

    Article  Google Scholar 

  5. Dixit, M. B. et al. In situ investigation of chemomechanical effects in thiophosphate solid electrolytes. Matter 3, 2138–2159 (2020).

    Article  Google Scholar 

  6. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  7. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    Article  Google Scholar 

  8. Liu, G. et al. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett. 20, 6660–6665 (2020).

    Article  Google Scholar 

  9. Kim, S. Y. & Li, J. Porous mixed ionic electronic conductor interlayers for solid-state batteries. Energy Mater. Adv. 2021, 1519569 (2021).

    Article  Google Scholar 

  10. Choi, H. J. et al. In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci. 9, e2103826 (2021).

    Article  Google Scholar 

  11. Cui, C. et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries. Sci. Adv. 8, eadd2000 (2022).

    Article  Google Scholar 

  12. Ji, X. et al. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020).

    Article  Google Scholar 

  13. Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  Google Scholar 

  14. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  Google Scholar 

  15. Raj, V. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022).

    Article  Google Scholar 

  16. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  Google Scholar 

  17. Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020).

    Article  Google Scholar 

  18. Wang, Z. et al. Creep-enabled 3D solid-state lithium-metal battery. Chem 6, 2878–2892 (2020).

    Article  Google Scholar 

  19. Wu, B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803 (2018).

    Article  Google Scholar 

  20. Otoyama, M. et al. Visualization and control of chemically induced crack formation in all-solid-state lithium-metal batteries with sulfide electrolyte. ACS Appl. Mater. Interfaces 13, 5000–5007 (2021).

    Article  Google Scholar 

  21. Mo, F. et al. Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv. Energy Mater. 9, 1902123 (2019).

    Article  Google Scholar 

  22. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  Google Scholar 

  23. Zhang, L. et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 15, 94–98 (2020).

    Article  Google Scholar 

  24. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  Google Scholar 

  25. Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article  Google Scholar 

  26. Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article  Google Scholar 

  27. Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 interface. Electrochim. Acta 296, 842–847 (2019).

    Article  Google Scholar 

  28. Wan, H. et al. F and N rich solid electrolyte for stable all-solid-state battery. Adv. Funct. Mater. 32, 2110876 (2022).

    Article  MathSciNet  Google Scholar 

  29. Ning, Z. et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 20, 1121–1129 (2021).

    Article  Google Scholar 

  30. Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article  Google Scholar 

  31. Yang, C. et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 31, e1804815 (2019).

    Article  Google Scholar 

  32. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  33. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  37. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  38. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under award number DEEE0008856 (received by C.W.) and the Advanced Research Projects Agency-Energy under award DE-AR0000781 (received by C.W). We thank T. Deng for providing LiNiO2 cathode material.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and C.W. conceived the idea for this project. H.W. prepared the materials and performed the characterization and electrochemical measurements. Z.W. and B.Z. conducted the simulations. Z.W. assisted on contact angle test and materials preparation. S.L. assisted on three-electrode cell tests. X.H. and W.Z. assisted on battery testing.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Table 1 and Note 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Wang, Z., Liu, S. et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01231-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing