Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries

Today’s sodium-ion batteries can not only be used in stationary energy storage applications, but also in 160–280 mile driving-range five-passenger electric vehicles. This technology will alleviate some of the supply-chain issues arising from limited resources of materials used in the ubiquitous lithium-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Closing price of lithium carbonate, sodium carbonate, cobalt and nickel over the last five years.
Fig. 2: State-of-the-art energy densities and cycle lives of the Na-ion technology.
Fig. 3: How the type of battery chemistry influences driving range in EVs.

References

  1. Global EV Outlook 2022 (IEA, 2022); https://www.iea.org/reports/global-ev-outlook-2022

  2. Greim, P., Solomon, A. A. & Breyer, C. Nat. Commun. 11, 4570 (2020).

    Article  Google Scholar 

  3. Karabelli, D. et al. Front. Energy Res. 8, 594857 (2020).

    Article  Google Scholar 

  4. Li, Y. et al. Energy Storage Mater. 7, 130–151 (2017).

  5. McCandles, J. Precious Metal Values are Raising Battery Prices and Slowing EV Uptake. Newsweek (4 April 2022).

  6. Powering the Drive to Net Zero (Green Finance Institute, 2022); https://www.greenfinanceinstitute.co.uk/wp-content/uploads/2022/05/Powering-The-Drive-To-Net-Zero-Report.pdf

  7. Tapia-Ruiz, N. et al. J. Phys. Energy 3, 031503 (2021).

    Article  Google Scholar 

  8. Wu, K., Dou, X., Zhang, X. & Ouyang, C. Engineering https://doi.org/10.1016/j.eng.2022.04.011 (in the press).

  9. Usiskin, R. et al. Nat. Rev. Mater. 6, 1020–1035 (2021).

    Article  Google Scholar 

  10. Hu, Y.-S. & Li, Y. ACS Energy Lett. 6, 4115–4117 (2021).

    Article  Google Scholar 

  11. Rudola, A. et al. J. Mater. Chem. A 9, 8279–8302 (2021).

    Article  Google Scholar 

  12. Tarascon, J.-M. Joule 4, 1616–1620 (2020).

    Article  Google Scholar 

  13. Lithium, Cobalt and Nickel: The Gold Rush of the 21st Century (Faraday Insights, 2020); https://www.faraday.ac.uk/wp-content/uploads/2022/09/Faraday_Insights_6_Updated_Sept2022_FINAL.pdf

  14. Kim, J.-H., Park, K.-J., Kim, S. J., Yoon, C. S. & Sun, Y.-K. J. Mater. Chem. A 7, 2694–2701 (2019).

    Article  Google Scholar 

  15. Hirsh, H. S. et al. Adv. Energy Mater. 10, 2001274 (2020).

    Article  Google Scholar 

  16. Kane, M. VW-Related Guoxuan High-Tech Launches Record-Setting 210 Wh/kg LFP Battery Cells. INSIDEEVs https://insideevs.com/news/481770/guoxuan-210-whkg-lfp-battery-cells/ (2021).

  17. Monika. Advancing power battery technology: review of Chinese firms’ breakthroughs in 2021. Gasgoo https://autonews.gasgoo.com/new_energy/70019784.html (2022).

  18. Scott, A. Sodium comes to the battery world. c&en Chemical & Engineering News (24 May 2022).

  19. Li, Y. et al. Energy Storage Mater. 5, 191–197 (2016).

    Article  Google Scholar 

  20. Zhang, N. China First Demonstrates the 100 kWh Na-Ion Battery System for Energy Storage. Chinese Academy of Science Newsroom https://english.cas.cn/newsroom/research_news/201904/t20190401_207399.shtml (1 April 2019).

  21. Rong, X. et al. Energy Storage Sci. Technol. 9, 515 (2020).

  22. Kothari, S. BYD Blade Battery: Everything you should know. TopElectricSUV https://topelectricsuv.com/news/byd/byd-blade-battery-update/ (7 June 2022).

  23. Yang, X.-G., Liu, T. & Wang, C.-Y. Nat. Energy 6, 176–185 (2021).

    Article  Google Scholar 

  24. Rudola, A., Wright, C. J. & Barker, J. J. Electrochem. Soc. 168, 110534 (2021).

    Article  Google Scholar 

  25. Rudola, A., Gajjela, S. R. & Balaya, P. Electrochem. Commun. 86, 157–160 (2018).

    Article  Google Scholar 

  26. Li, Y. et al. Nat. Energy 7, 511–519 (2022).

    Article  Google Scholar 

  27. Rudola, A., Coowar, F., Heap, R. & Barker, J. in Na-ion Batteries (eds Croguennec, L. and Monconduit, L.) 313–344 (Wiley, 2021).

  28. Chayambuka, K., Mulder, G., Danilov, D. L. & Notten, P. H. L. Adv. Energy Mater. 10, 2001310 (2020).

    Article  Google Scholar 

  29. Zhou, Q. et al. Chinese Phys. Lett. 38, 076501 (2021).

    Article  Google Scholar 

  30. Rudola, A., Wright, C. J. & Barker, J. Energy Mater. Adv. 2021, 9798460 (2021).

    Article  Google Scholar 

  31. Durmus, Y. E. et al. Adv. Energy Mater. 10, 2000089 (2020).

    Article  Google Scholar 

  32. Whitacre, J. F. Science 333, 290–290 (2011).

    Article  Google Scholar 

  33. 2020 KIA e-Niro 4 - specifications and price. EVSpecifications https://www.evspecifications.com/en/model/a15ff5 (2020).

  34. All electric Jaguar I-Pace S. Jaguar https://www.jaguar.co.uk/jaguar-range/i-pace/specifications/index.html (2022).

  35. Electric Vehicle Database (Mercedes EQC 400 4MATIC, accessed 8 July 2022); https://ev-database.org/car/1337/Mercedes-EQC-400-4MATIC

  36. Hyundai KONA electric 64 kWh. Hyundai https://www1.hyundai.news/fileadmin/eu/uk/20210308_kona_electric/hyundai-kona-electric-pricing-specs-tech-0321.pdf (2021).

  37. Electric Vehicle Database (Audi e-tron 55 quattro, accessed 8 July 2022); https://ev-database.uk/car/1355/Audi-e-tron-55-quattro

  38. 2021 Tesla model 3 performance AWD. EVSpecifications https://www.evspecifications.com/en/model/1af7111 (2021).

  39. Lima, P. Comparison of different EV batteries in 2020. PushEVs https://pushevs.com/2020/04/04/comparison-of-different-ev-batteries-in-2020/ (2022).

  40. BYD Han EV 77 kWh specifications. Electric Vehicle Specs https://www.electricvehiclespecs.com/byd-han-ev-77-kwh-specifications/ (2022).

  41. Bauer, A. et al. Adv. Energy Mater. 8, 1702869 (2018).

    Article  Google Scholar 

  42. FOTW #1230, March 21, 2022: More than Half of all Daily Trips Were Less than Three Miles in 2021 (Energy.gov, 2022); https://www.energy.gov/eere/vehicles/articles/fotw-1230-march-21-2022-more-half-all-daily-trips-were-less-three-miles-2021

  43. Ziegler, M. S., Song, J. & Trancik, J. E. Energy Environ. Sci. 14, 6074–6098 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Rudola or Jerry Barker.

Ethics declarations

Competing interests

All authors are employed by Faradion Limited.

Peer review

Peer review information

Nature Energy thanks Yong-Sheng Hu and David Mitlin for their contribution to the peer review of this work.

Source data

Source Data Fig 2

Figure_2_Source_Data_Faradion_Manuscript_NENERGY-22020369C

Source Data Fig 3

Figure_3_Source_Data_Faradion_Manuscript_NENERGY-22020369C

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudola, A., Sayers, R., Wright, C.J. et al. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat Energy 8, 215–218 (2023). https://doi.org/10.1038/s41560-023-01215-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01215-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing