Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CO2 Electroreduction

Enhancing carbon utilization

Zero–gap CO/CO2 electrolyzers typically exhibit low energy conversion efficiency at high reactant conversion due to current losses associated with the parasitic production of H2. Now, an electrolyzer using an electrocatalyst in bulk heterojunction with a hydrophobic covalent organic framework has maintained high energy efficiency at near unity reactant conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Qualitative relationship between the CO2 reduction energy conversion efficiency and the carbon utilization efficiency.

References

  1. Ozden, A. et al. Nat. Energy https://doi.org/10.1038/s41560-022-01188-2 (2023).

    Article  Google Scholar 

  2. Singh, M. R., Clark, E. L. & Bell, A. T. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Article  Google Scholar 

  3. Larrazábal, G. O. et al. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  Google Scholar 

  4. Ma, M. et al. Energy Environ. Sci. 13, 977–985 (2020).

    Article  Google Scholar 

  5. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  Google Scholar 

  6. Wang, L. et al. ElectroACS Catal 8, 7445–7454 (2018).

    Google Scholar 

  7. Jouny, M., Luc, W. & Jiao, F. Nat. Catal. 1, 748–755 (2018).

    Article  Google Scholar 

  8. Jouny, M., Hutchings, G. S. & Jiao, F. Nat. Catal. 2, 1062–1070 (2019).

    Article  Google Scholar 

  9. Resasco, J. et al. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  Google Scholar 

  10. Ringe, S. et al. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  Google Scholar 

  11. Endrődi, B. et al. Nat. Energy 6, 439–448 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezra L. Clark.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, E.L. Enhancing carbon utilization. Nat Energy 8, 119–120 (2023). https://doi.org/10.1038/s41560-023-01207-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-023-01207-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing