Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Africa needs context-relevant evidence to shape its clean energy future


Aligning development and climate goals means Africa’s energy systems will be based on clean energy technologies in the long term, but pathways to get there are uncertain and variable across countries. Although current debates about natural gas and renewables in Africa are heated, they largely ignore the substantial context specificity of the starting points, development objectives and uncertainties of each African country’s energy system trajectory. Here we—an interdisciplinary and majority African group of authors—highlight that each country faces a distinct solution space and set of uncertainties for using renewables or fossil fuels to meet its development objectives. For example, Ethiopia is headed for an accelerated green-growth pathway, but Mozambique is at a crossroads of natural gas expansion with implicit large-scale technological, economic, financial and social risks and uncertainties. We provide geopolitical, policy, finance and research recommendations to create firm country-specific evidence to identify adequate energy system pathways for development and to enable their implementation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Country-specific differences of current energy systems and relative generation technology favourability in Africa.
Fig. 2: Schematic illustration of meaningful generation technology pathways for different countries discussed in this Perspective.


  1. Africa Energy Outlook 2022 (IEA/OECD, 2022).

  2. Towards a Prosperous and Sustainable Africa (IRENA, 2022).

  3. Barasa, M., Bogdanov, D., Oyewo, A. S. & Breyer, C. A cost optimal resolution for sub-Saharan Africa powered by 100% renewables in 2030. Renew. Sustain. Energy Rev. 92, 440–457 (2018).

    Article  Google Scholar 

  4. van der Zwaan, B., Kober, T., Dalla Longa, F., van der Laan, A. & Kramer, G. J. An integrated assessment of pathways for low-carbon development in Africa. Energy Policy 117, 387–395 (2018).

    Article  Google Scholar 

  5. African Economic Outlook 2022 (ADB, 2022).

  6. Mercure, J.-F. et al. Reframing incentives for climate policy action. Nat. Energy 6, 1133–1143.

  7. Mulugetta, Y., Ben Hagan, E. & Kammen, D. Energy access for sustainable development. Environ. Res. Lett. 14, 020201 (2019).

    Article  Google Scholar 

  8. Alova, G., Trotter, P. A. & Money, A. A machine-learning approach to predicting Africa’s electricity mix based on planned power plants and their chances of success. Nat. Energy 6, 158–166 (2021).

    Article  Google Scholar 

  9. Winkler, H., Letete, T. & Marquard, A. Equitable access to sustainable development: operationalizing key criteria. Clim. Policy 13, 411–432 (2013).

    Article  Google Scholar 

  10. Hafner, M. & Tagliapietra, S. The Geopolitics of the Global Energy Transition (Springer Nature, 2020).

  11. Power, M. et al. The political economy of energy transitions in Mozambique and South Africa: the role of the rising powers. Energy Res. Soc. Sci. 17, 10–19 (2016).

    Article  Google Scholar 

  12. Albert, O. The dominance of foreign capital and its impact on indigenous technology development in the production of liquefied natural gas in Nigeria. Rev. Afr. Polit. Econ. 45, 478–490 (2018).

    Article  Google Scholar 

  13. Puig, D. et al. An action agenda for Africa’s electricity sector. Science 373, 616–619 (2021).

    Article  Google Scholar 

  14. Kemfert, C., Präger, F., Braunger, I., Hoffart, F. M. & Brauers, H. The expansion of natural gas infrastructure puts energy transitions at risk. Nat. Energy 7, 582–587 (2022).

    Article  Google Scholar 

  15. Hafner, M., Tagliapietra, S. & de Strasser, L. in Energy in Africa: Challenges and Opportunities (eds Hafner, M., Tagliapietra, S. & de Strasser, L.) 1–21 (Springer, 2018).

  16. Trotter, P. A. Rural electrification, electrification inequality and democratic institutions in sub-Saharan Africa. Energy Sustain. Dev. 34, 111–129 (2016).

    Article  Google Scholar 

  17. Bugaje, A.-A. B., Dioha, M. O., Abraham-Dukuma, M. C. & Wakil, M. Rethinking the position of natural gas in a low-carbon energy transition. Energy Res. Soc. Sci. 90, 102604 (2022).

    Article  Google Scholar 

  18. Mutezo, G. & Mulopo, J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew. Sustain. Energy Rev. 137, 110609 (2021).

    Article  Google Scholar 

  19. Kigali Communique. Ensuring a Just and Equitable Energy Transition in Africa: Seven Transformative Actions for SDG7 (SEforALL, 2022);

  20. Agutu, C., Egli, F., Williams, N. J., Schmidt, T. S. & Steffen, B. Accounting for finance in electrification models for sub-Saharan Africa. Nat. Energy 7, 631–641 (2022).

    Article  Google Scholar 

  21. RISE 2020: Regulatory Indicators for Sustainable Energy—Sustaining the Momentum (The World Bank Group, 2020).

  22. Trotter, P. A. et al. How climate policies can translate to tangible change: evidence from eleven low- and lower-middle income countries. J. Clean. Prod. 346, 131014 (2022).

    Article  Google Scholar 

  23. Trotter, P. A., McManus, M. C. & Maconachie, R. Electricity planning and implementation in sub-Saharan Africa: a systematic review. Renew. Sustain. Energy Rev. 74, 1189–1209 (2017).

    Article  Google Scholar 

  24. Musonye, X. S., Davíðsdóttir, B., Kristjánsson, R., Ásgeirsson, E. I. & Stefánsson, H. Integrated energy systems’ modeling studies for sub-Saharan Africa: a scoping review. Renew. Sustain. Energy Rev. 128, 109915 (2020).

    Article  Google Scholar 

  25. Kirshner, J. D., Cotton, M. D. & Salite, D. L. J. Mozambique’s fossil fuel drive is entrenching poverty and conflict. The Conversation (15 July 2021);

  26. Ramachandran, V. Blanket bans on fossil-fuel funds will entrench poverty. Nature 592, 489 (2021).

    Article  Google Scholar 

  27. Agenda 2063—The Africa We Want. (Africa Union Commission, 2015).

  28. Global Solar Atlas (The World Bank Group, 2017).

  29. Sterl, S., Fadly, D., Liersch, S., Koch, H. & Thiery, W. Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nat. Energy 6, 407–418 (2021).

    Article  Google Scholar 

  30. Altieri, K. E. et al. Achieving development and mitigation objectives through a decarbonization development pathway in South Africa. Clim. Policy 16, S78–S91 (2016).

    Article  Google Scholar 

  31. Sahlberg, A., Khavari, B., Korkovelos, A., Nerini, F. F. & Howells, M. A scenario discovery approach to least-cost electrification modelling in Burkina Faso. Energy Strateg. Rev. 38, 100714 (2021).

    Article  Google Scholar 

  32. Alao, O. & Kruger, W. Review of Private Power Investments in sub-Saharan Africa. Power Futures Lab Working Paper (African Power Platform, 2021).

  33. Gebreslassie, M. G. et al. Delivering an off-grid transition to sustainable energy in Ethiopia and Mozambique. Energy Sustain. Soc. 12, 23 (2022).

  34. Eberhard, A. & Naude, R. The South African renewable energy independent power producer procurement programme: a review and lessons learned. J. Energy South. Afr. 27, 1–14 (2016).

    Article  Google Scholar 

  35. Halsey, R., Bridle, R. & Geddes, A. Gas Pressure: Exploring the Case for Gas-Fired Power in South Africa (International Institute for Sustainable Development, 2022).

  36. Dewa, M. T., Van Der Merwe, A. F. & Matope, S. Production scheduling heuristics for frequent load-shedding scenarios: a knowledge engineering approach. South Afr. J. Ind. Eng. 31, 110–121 (2020).

    Google Scholar 

  37. Pleeck, S., Denton, F. & Mitchell, I. An EU tax on African carbon—assessing the impact and ways forward Center for Global Development Blog Series (2022).

  38. Montrone, L., Steckel, J. C. & Kalkuhl, M. The type of power capacity matters for economic development—evidence from a global panel. Resour. Energy Econ. 69, 101313 (2022).

    Article  Google Scholar 

  39. Winkler, H., Tyler, E., Keen, S. & Marquard, A. Just transition transaction in South Africa: an innovative way to finance accelerated phase out of coal and fund social justice. J. Sustain. Financ. Invest. (2022).

  40. Burkina Faso Power Africa Fact Sheet (USAID, 2021).

  41. Ouedraogo, B. I., Kouame, S., Azoumah, Y. & Yamegueu, D. Incentives for rural off grid electrification in Burkina Faso using LCOE. Renew. Energy 78, 573–582 (2015).

    Article  Google Scholar 

  42. Dwumfour, R. A. & Ntow-Gyamfi, M. Natural resources, financial development and institutional quality in Africa: is there a resource curse? Resour. Policy 59, 411–426 (2018).

    Article  Google Scholar 

  43. Semieniuk, G. et al. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Change 12, 532–538 (2022).

    Article  Google Scholar 

  44. Waissbein, O., Glemarec, Y., Bayraktar, H. & Schmidt, T. S. Derisking Renewable Energy Investment. A Framework to Support Policymakers in Selecting Public Instruments to Promote Renewable Energy Investment in Developing Countries (United Nations Development Programme, 2013).

  45. Schmidt, T. S. & Huenteler, J. Anticipating industry localization effects of clean technology deployment policies in developing countries. Glob. Environ. Chang. 38, 8–20 (2016).

    Article  Google Scholar 

  46. Granoff, I., Hogarth, J. R. & Miller, A. Nested barriers to low-carbon infrastructure investment. Nat. Clim. Change 6, 1065–1071 (2016).

    Article  Google Scholar 

  47. Falchetta, G., Dagnachew, A. G., Hof, A. F. & Milne, D. J. The role of regulatory, market and governance risk for electricity access investment in sub-Saharan Africa. Energy Sustain. Dev. 62, 136–150 (2021).

    Article  Google Scholar 

  48. Egli, F., Steffen, B. & Schmidt, T. S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 3, 1084–1092 (2018).

    Article  Google Scholar 

  49. Sokona, Y. Building capacity for ‘energy for development’ in Africa: four decades and counting. Clim. Policy 22, 671–679 (2022).

    Article  Google Scholar 

  50. World Development Indicators (The World Bank Group, accessed 25 May 2022);

Download references


This work was partially funded by the Climate Compatible Growth programme of the UK government. The views expressed here do not necessarily reflect the UK government’s official policies.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yacob Mulugetta, Youba Sokona or Philipp A. Trotter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Boaventura Cuamba, Haileselassie Medhin and Mark Radka for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mulugetta, Y., Sokona, Y., Trotter, P.A. et al. Africa needs context-relevant evidence to shape its clean energy future. Nat Energy 7, 1015–1022 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing