Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Redox-tunable Lewis bases for electrochemical carbon dioxide capture

Abstract

Carbon capture is considered a critical means for climate change mitigation. However, conventional wet chemical scrubbing utilizing sp3 amines suffers from high energy consumption, corrosion and sorbent degradation, motivating the search for more efficient carbon dioxide separation strategies. Here, we demonstrate a library of redox-tunable Lewis bases with sp2-nitrogen centres that can reversibly capture and release carbon dioxide through an electrochemical cycle. The mechanism of the carbon capture process is elucidated via a combined experimental and computational approach. We show that the properties of these Lewis base sorbents can be fine-tuned via molecular design and electrolyte engineering. Moreover, we identify a bifunctional azopyridine base that holds promise for electrochemically mediated carbon capture, exhibiting >85% capacity utilization efficiency over cycling in a flow system under 15% carbon dioxide with 5% oxygen. This work broadens the structural scope of redox-active carbon dioxide sorbents and provides design guidelines on molecules with tunable basicity under electrochemical conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional sp3 nitrogen bases and redox-tunable sp2 nitrogen bases for carbon capture.
Fig. 2: A broad chemical space of redox-tunable sp2 nitrogen bases for EMCC.
Fig. 3: The seven elementary reaction steps (ECEC mechanism) considered in the DFT calculations.
Fig. 4: Molecular and electrolyte engineering concepts to optimize the CO2 separation performance of redox-tunable Lewis base sorbents.
Fig. 5: CO2 separation performance in an EMCC flow cell with AzPy.
Fig. 6: CO2 separation performance in an EMCC flow cell with AzPy in the presence of oxygen impurity.

Similar content being viewed by others

Data availability

The data generated or analysed during this study are included in the published article and its Supplementary Information file. Source data are provided with this paper.

References

  1. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. Chu, S. Carbon capture and sequestration. Science 325, 1599 (2009).

    Article  Google Scholar 

  3. Haszeldine, R. S. Carbon capture and storage: how green can black be? Science 325, 1647–1652 (2009).

    Article  Google Scholar 

  4. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article  Google Scholar 

  5. Shi, X. et al. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020).

    Article  Google Scholar 

  6. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  Google Scholar 

  7. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  Google Scholar 

  8. Said, R. B., Kolle, J. M., Essalah, K., Tangour, B. & Sayari, A. A unified approach to CO2–amine reaction mechanisms. ACS Omega 5, 26125–26133 (2020).

    Article  Google Scholar 

  9. Davis, J. & Rochelle, G. Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia 1, 327–333 (2009).

    Article  Google Scholar 

  10. Rochelle, G. T. in Absorption-Based Post-combustion Capture of Carbon Dioxide 35–67 (Woodhead Publishing, 2016).

  11. Vasudevan, S. et al. Energy penalty estimates for CO2 capture: comparison between fuel types and capture-combustion modes. Energy 103, 709–714 (2016).

    Article  Google Scholar 

  12. Zheng, R. F. et al. A single-component water-lean post-combustion CO2 capture solvent with exceptionally low operational heat and total costs of capture—comprehensive experimental and theoretical evaluation. Energy Environ. Sci. 13, 4106–4113 (2020).

    Article  Google Scholar 

  13. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  Google Scholar 

  14. Park, Y., Lin, K.-Y. A., Park, A.-H. A. & Petit, C. Recent advances in anhydrous solvents for CO2 capture: ionic liquids, switchable solvents, and nanoparticle organic hybrid materials. Front. Energy Res. 3, 42 (2015).

    Article  Google Scholar 

  15. Halliday, C. & Hatton, T. A. Sorbents for the capture of CO2 and other acid gases: a review. Ind. Eng. Chem. Res. 60, 9313–9346 (2021).

    Article  Google Scholar 

  16. Rheinhardt, J. H., Singh, P., Tarakeshwar, P. & Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Lett. 2, 454–461 (2017).

    Article  Google Scholar 

  17. Renfrew, S. E., Starr, D. E. & Strasser, P. Electrochemical approaches toward CO2 capture and concentration. ACS Catal. 10, 13058–13074 (2020).

    Article  Google Scholar 

  18. Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C. & Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 14, 781–814 (2021).

    Article  Google Scholar 

  19. Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Post-combustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).

    Article  Google Scholar 

  20. Voskian, S. & Hatton, T. A. Faradaic electro-swing reactive adsorption for CO2 capture. Energy Environ. Sci. 12, 3530–3547 (2019).

    Article  Google Scholar 

  21. Liu, Y. et al. Electrochemically mediated gating membrane with dynamically controllable gas transport. Sci. Adv. 6, eabc1741 (2020).

    Article  Google Scholar 

  22. Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T. & Hatton, T. A. Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nat. Commun. 11, 2278 (2020).

    Article  Google Scholar 

  23. Diederichsen, K. M., Liu, Y., Ozbek, N., Seo, H. & Hatton, T. A. Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. Joule 6, 221–239 (2022).

    Article  Google Scholar 

  24. Seo, H., Rahimi, M. & Hatton, T. A. Electrochemical carbon dioxide capture and release with a redox-active amine. J. Am. Chem. Soc. 144, 2164–2170 (2022).

    Article  Google Scholar 

  25. Mizen, M. B. & Wrighton, M. S. Reductive addition of CO2 to 9,10-phenanthrenequinone. J. Electrochem. Soc. 136, 941–946 (1989).

    Article  Google Scholar 

  26. Scovazzo, P., Poshusta, J., DuBois, D., Koval, C. & Noble, R. Electrochemical separation and concentration of <1% carbon dioxide from nitrogen. J. Electrochem. Soc. 150, D91 (2003).

    Article  Google Scholar 

  27. Simpson, T. C. & Durand, R. R. Reactivity of carbon dioxide with quinones. Electrochim. Acta 35, 1399–1403 (1990).

    Article  Google Scholar 

  28. Simeon, F. et al. Electrochemical and molecular assessment of quinones as CO2-binding redox molecules for carbon capture. J. Phys. Chem. C 126, 1389–1399 (2022).

    Article  Google Scholar 

  29. Singh, P. et al. Electrochemical capture and release of carbon dioxide using a disulfide–thiocarbonate redox cycle. J. Am. Chem. Soc. 139, 1033–1036 (2017).

    Article  Google Scholar 

  30. Ranjan, R. et al. Reversible electrochemical trapping of carbon dioxide using 4,4′-bipyridine that does not require thermal activation. J. Phys. Chem. Lett. 6, 4943–4946 (2015).

    Article  Google Scholar 

  31. Assary, R. S., Brushett, F. R. & Curtiss, L. A. Reduction potential predictions of some aromatic nitrogen-containing molecules. RSC Adv. 4, 57442–57451 (2014).

    Article  Google Scholar 

  32. Vasudevan, D. & Wendt, H. Electroreduction of oxygen in aprotic media. J. Electroanal. Chem. 392, 69–74 (1995).

    Article  Google Scholar 

  33. Zhuang, Z. et al. Spectroscopy of 4,4′-azopyridine by density functional theory and surface-enhanced Raman scattering. J. Mol. Struct. 794, 77–82 (2006).

    Article  Google Scholar 

  34. Wei, X. et al. Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species. Adv. Energy Mater. 5, 1400678 (2015).

    Article  Google Scholar 

  35. Milshtein, J. D. et al. Towards low resistance nonaqueous redox flow batteries. J. Electrochem. Soc. 164, A2487–A2499 (2017).

    Article  Google Scholar 

  36. Yuan, J. et al. Membranes in non-aqueous redox flow battery: a review. J. Power Sources 500, 229983 (2021).

    Article  Google Scholar 

  37. IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B. et al.) (Cambridge Univ. Press, 2005).

  38. Winkler, J. D., Twenter, B. M. & Gendrineau, T. Synthesis of substituted phenazines via palladium-catalyzed aryl ligation. Heterocycles 84, 1345–1353 (2012).

    Article  Google Scholar 

  39. Fang, W., Liu, X., Lu, Z. & Tu, T. Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chem. Commun. 50, 3313–3316 (2014).

    Article  Google Scholar 

  40. Frisch, M. J. et al. Gaussian 16 Revision C.01 (Gaussian Inc., 2016).

  41. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  42. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  Google Scholar 

  43. Clark, T., Chandrasekhar, J., Spitznagel, G. W. & Schleyer, P. V. R. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. J. Comput. Chem. 4, 294–301 (1983).

    Article  Google Scholar 

  44. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  Google Scholar 

  45. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  Google Scholar 

  46. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Yayuan Liu. and T.A.H. acknowledge support from the National Science Foundation (grant number 2029442). Yayuan Liu and X.L. acknowledge support from the Johns Hopkins University and American Chemical Society Petroleum Research Fund (65626-DNI4). Yuanyue Liu acknowledges support from the National Science Foundation (grant numbers 1900039 and 2029442), American Chemical Society Petroleum Research Fund (60934-DNI6) and Welch Foundation (grant number F-1959-20210327). For the calculations, we used computational resources at the Extreme Science and Engineering Discovery Environment, Texas Advanced Computing Center, Argonne National Laboratory and Brookhaven National Laboratory. We thank K. M. Diederichsen, H. Seo and E. Wenbo Zhao for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Yayuan Liu conceived of the project and designed the experiments. Yayuan Liu and X.L. carried out the experiments and analysed the data. X.Z. performed the DFT calculations. Yayuan Liu, Yuanyue Liu and T.A.H. supervised the project. Yayuan Liu, X.L. and X.Z. wrote the paper. All authors discussed the results and revised or commented on the manuscript.

Corresponding authors

Correspondence to Yuanyue Liu, T. Alan Hatton or Yayuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Rajeev Assary and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–9 and Notes 1–4.

Source data

Source Data Fig. 2

Cyclic voltammetry data for panels a–f.

Source Data Fig. 4

Cyclic voltammetry data for panels a–c and e.

Source Data Fig. 5

Time versus CO2 concentration data for each capture–release cycle.

Source Data Fig. 6

Time versus CO2 concentration data for each capture–release cycle and capture–release voltage profiles for panel d.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhao, X., Liu, Y. et al. Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nat Energy 7, 1065–1075 (2022). https://doi.org/10.1038/s41560-022-01137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01137-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing