Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The predicted persistence of cobalt in lithium-ion batteries

Abstract

Cobalt, widely used in the layered oxide cathodes needed for long-range electric vehicles (EVs), has been identified as a key EV supply bottleneck. Many reports have proposed that nickel-rich, cobalt-free cathodes can—in addition to supply chain benefits—herald significant increases in energy density and reductions in EV cost if they can be stabilized. Here we present a contrasting viewpoint. We show that cobalt’s thermodynamic stability in layered structures is essential in enabling access to higher energy densities without sacrificing performance or safety, effectively lowering battery costs per kWh despite increasing raw material costs. We additionally show that the supply growth required to support intermediate cobalt content cathodes for 1.3 billion EVs by 2050 is within historical trends for major industrial metals—although supply concentration in challenging jurisdictions is likely to remain a problem. We predict that these techno-economic factors will drive the continued use of cobalt in nickel-based EV batteries.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the voltage profiles and specific energies of Ni/Co layered oxides.
Fig. 2: Comparison of the effect of Ni and Co on the physical properties of layered oxides.
Fig. 3: Impact of Ni, Mn and Co content on layered oxide performance and cost per kWh.
Fig. 4: EV-driven supply expansion for Ni and Co in historic context.

References

  1. Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 470 (2018).

    Article  Google Scholar 

  2. US Geological Survey. Mineral commodity summaries 2021 (US Geological Survey, 2021).

  3. Edmonson, J. & Holland, A. Materials for Electric Vehicles: Electric Motors, Battery Cells & Packs, HV Cabling 2020-2030 (IDTechEx, 2020).

  4. Noh, H.-J., Youn, S., Yoon, C. S. & Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121–130 (2013).

    Article  Google Scholar 

  5. Li, H. et al. Is cobalt needed in Ni-Rich positive electrode materials for lithium ion batteries? J. Electrochem. Soc. 166, A429–A439 (2019).

    Article  Google Scholar 

  6. Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    Article  Google Scholar 

  7. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017).

    Article  Google Scholar 

  8. Streipert, B. et al. Conventional electrolyte and inactive electrode materials in lithium-ion batteries: determining cumulative impact of oxidative decomposition at high voltage. ChemSusChem 13, 5301–5307 (2020).

    Article  Google Scholar 

  9. Wandt, J., Freiberg, A. T. S., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article  Google Scholar 

  10. Rinkel, B. L. D., Hall, D. S., Temprano, I. & Grey, C. P. Electrolyte oxidation pathways in lithium-ion batteries. J. Am. Chem. Soc. 142, 15058–15074 (2020).

    Article  Google Scholar 

  11. Li, W., Asl, H. Y., Xie, Q. & Manthiram, A. Collapse of LiNi1–xyCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J. Am. Chem. Soc. 141, 5097–5101 (2019).

    Article  Google Scholar 

  12. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 164, A1361–A1377 (2017).

    Article  Google Scholar 

  13. Kasnatscheew, J. et al. Changing established belief on capacity fade mechanisms: thorough investigation of LiNi1/3Co1/3Mn1/3O2 (NCM111) under high voltage conditions. J. Phys. Chem. C 9, 1521–1529 (2017).

  14. Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    Article  Google Scholar 

  15. Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 1, 15008 (2018).

    Google Scholar 

  16. BMO Capital Markets. The Lithium Ion Battery and the EV Market: The Science Behind What You Can’t See (2018); http://www.fullertreacymoney.com/system/data/files/PDFs/2018/February/22nd/BMO_Lithium_Ion_Battery_EV_Mkt_(20_Feb_2018).pdf

  17. Aiken, C. P. et al. A survey of in situ gas evolution during high voltage formation in Li-ion pouch cells. J. Electrochem. Soc. 162, A760 (2015).

    Article  Google Scholar 

  18. Kasnatscheew, J. et al. Learning from electrochemical data: simple evaluation and classification of LiMO2-type-based positive electrodes for Li-ion batteries. Energy Technol. 5, 1670–1679 (2017).

    Article  Google Scholar 

  19. Kasnatscheew, J., Röser, S., Börner, M. & Winter, M. Do increased Ni contents in LiNixMnyCozO2 (NMC) electrodes decrease structural and thermal stability of Li ion batteries? A thorough look by consideration of the Li+ extraction ratio. ACS Appl. Energy Mater. 2, 7733–7737 (2019).

    Article  Google Scholar 

  20. Urban, A., Abdellahi, A., Dacek, S., Artrith, N. & Ceder, G. Electronic-structure origin of cation disorder in transition-metal oxides. Phys. Rev. Lett. 119, 176402 (2017).

    Article  Google Scholar 

  21. Chen, H., Freeman, C. L. & Harding, J. H. Charge disproportionation and Jahn-Teller distortion in LiNiO2 and NaNiO2: a density functional theory study. Phys. Rev. B 84, 085108 (2011).

    Article  Google Scholar 

  22. Gamsjäger, H., Mompean, F. J., Issy-les-Moulineaux (France), NEA Data Bank, & OECD Nuclear Energy Agency. Chemical Thermodynamics of Nickel (Elsevier, 2005).

  23. Wang, M. & Navrotsky, A. Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1−xCoxO2. Solid State Ion. 166, 167–173 (2004).

    Article  Google Scholar 

  24. Lide, D. R. et al. CRC Handbook of Chemistry and Physics (CRC Press, 2005).

  25. Kim, J. et al. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 8, 1702028 (2018).

    Article  Google Scholar 

  26. Papp, J. K. et al. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials. Electrochim. Acta 368, 137505 (2021).

    Article  Google Scholar 

  27. Lebens-Higgins, Z. W. et al. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2−yAlyO2 systems. Mater. Horiz. 6, 2112–2123 (2019).

    Article  Google Scholar 

  28. Baba, Y. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ion. 148, 311–316 (2002).

    Article  Google Scholar 

  29. Duh, Y.-S., Lee, C.-Y., Chen, Y.-L. & Kao, C.-S. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochim. Acta 642, 88–94 (2016).

    Article  Google Scholar 

  30. Dahn, J. R., Fuller, E. W., Obrovac, M. & von Sacken, U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid State Ion. 69, 265–270 (1994).

    Article  Google Scholar 

  31. MacNeil, D. D., Lu, Z., Chen, Z. & Dahn, J. R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources 108, 8–14 (2002).

    Article  Google Scholar 

  32. Zhang, Z., Fouchard, D. & Rea, J. R. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J. Power Sources 70, 16–20 (1998).

    Article  Google Scholar 

  33. CAMX Power. GEMXTM: A Platform for Advanced High- Nickel Cathode Active Materials (2020). https://static1.squarespace.com/static/5ef24f5a75ecc479ebeb1eb0/t/5f10aa32295f7e43284a43c2/1594927666959/GEMX+Product+Overview_7_16_2020.pdf

  34. Kim, H., Kim, M. G., Jeong, H. Y., Nam, H. & Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett. 15, 2111–2119 (2015).

    Article  Google Scholar 

  35. Fu, X.-Z. et al. Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries. J. Solid State Electrochem. 14, 1117–1124 (2009).

    Article  Google Scholar 

  36. Yin, L. et al. Thermodynamics of antisite defects in layered nmc cathodes: systematic insights from high-precision powder diffraction analyses. Chem. Mater. 32, 1002–1010 (2020).

    Article  Google Scholar 

  37. Li, W., Lee, S. & Manthiram, A. High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).

    Article  Google Scholar 

  38. Sun, Y.-K., Lee, D.-J., Lee, Y. J., Chen, Z. & Myung, S.-T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 11434–11440 (2013).

    Article  Google Scholar 

  39. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  Google Scholar 

  40. Klein, S. et al. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells. J. Mater. Chem. A 9, 7546–7555 (2021).

    Article  Google Scholar 

  41. Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    Article  Google Scholar 

  42. Li, J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 164, A1534–A1544 (2017).

    Article  Google Scholar 

  43. Li, H. et al. Synthesis of single crystal LiNi0.88Co0.09Al0.03O2 with a two-step lithiation method. J. Electrochem. Soc. 166, A1956 (2019).

    Article  Google Scholar 

  44. Li, H., Li, J., Ma, X. & Dahn, J. R. Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries. J. Electrochem. Soc. 165, A1038 (2018).

    Article  Google Scholar 

  45. Sun, Y., Ouyang, C., Wang, Z., Huang, X. & Chen, L. Effect of Co content on rate performance of LiMn0.5−xCo2xNi0.5−xO2 cathode materials for lithium-ion batteries. J. Electrochem. Soc. 151, A504 (2004).

    Article  Google Scholar 

  46. Kim, Y., Lee, H. & Kang, S. First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2. J. Mater. Chem. 22, 12874 (2012).

    Article  Google Scholar 

  47. Zhecheva, E. & Stoyanova, R. Stabilization of the layered crystal structure of LiNiO2 by Co-substitution. Solid State Ion. 66, 143–149 (1993).

    Article  Google Scholar 

  48. Rougier, A., Saadoune, I., Gravereau, P., Willmann, P. & Delmas, C. Effect of cobalt substitution on cationic distribution in LiNi1−yCoyO2 electrode materials. Solid State Ion. 90, 83–90 (1996).

    Article  Google Scholar 

  49. Sun, Y.-K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320 (2009).

    Article  Google Scholar 

  50. Liu, Y. et al. The impact of upper cut-off voltage on the cycling performance of Li-ion cells with positive electrodes having various nickel contents. J. Electrochem. Soc. 169, 040531 (2022).

  51. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles 3rd edn (Electrochemical Energy Storage Department & Chemical Sciences and Engineering Division, Argonne National Laboratory, 2019).

  52. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  Google Scholar 

  53. Gard, M., Hasterok, D. & Halpin, J. A. Global whole-rock geochemical database compilation. Earth Syst. Sci. Data 11, 1553–1566 (2019).

    Article  Google Scholar 

  54. Commodities: Price Chart (S&P Global Market Intelligence, 2020).

  55. Smith, C. G. Always the bridesmaid, never the bride: cobalt geology and resources. Appl. Earth Sci. 110, 75–80 (2001).

    Article  Google Scholar 

  56. Dolansky, L. M. Controls on the Genesis of Hydrothermal Cobalt Mineralization: Insights from the Mineralogy and Geochemistry of the Bou Azzer Deposits, Morocco. MSc thesis, McGill University (2007).

  57. Migdisov, A., Zezin, D. & Williams-Jones, A. An experimental study of Cobalt (II) complexation in Cl and H2S-bearing hydrothermal solutions. Geochim. Cosmochim. Acta 75, 4065–4079 (2011).

    Article  Google Scholar 

  58. Form 10-K 2019 (Freeport-McMoRan, 2020).

  59. Faenza, N. V. et al. Phase evolution and degradation modes of Rm LixNi1–yzCoyAlzO2 electrodes cycled near complete delithiation. Chem. Mater. 30, 7545–7574 (2018).

    Article  Google Scholar 

  60. Jung, R. et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries. J. Electrochem. Soc. 165, A132–A141 (2018).

    Article  Google Scholar 

  61. Ménétrier, M., Saadoune, I., Levasseur, S. & Delmas, C. The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. J. Mater. Chem. 9, 1140 (1999). 1135.

    Article  Google Scholar 

  62. Delmas, C. et al. An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties. Electrochim. Acta 45, 243–253 (1999).

    Article  Google Scholar 

  63. Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high energy density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article  Google Scholar 

  64. Kim, J.-H., Park, K.-J., Kim, S. J., Yoon, C. S. & Sun, Y.-K. A method of increasing the energy density of layered Ni-rich Li[Ni1−2xCoxMnx]O2 cathodes (x = 0.05, 0.1, 0.2). J. Mater. Chem. A 7, 2694–2701 (2019).

    Article  Google Scholar 

  65. Zhu, J. & Chen, G. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1−x−y]O2 cathodes. J. Mater. Chem. A 7, 5463–5474 (2019).

    Article  Google Scholar 

  66. Wu, F. & Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10, 435–459 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

W.E.G. and G.M.B. thank W. C. Chueh for guidance and mentorship during this study. The authors also thank W. C. Chueh and G. Yushin for insightful discussions on cathode materials and fundamental operating mechanisms. W.E.G. thanks the Stanford StorageX initiative and the Precourt Institute for Energy for funding. The authors thank J. Goldman and M. Hitzman for reviewing and commenting on various manuscript drafts, as well as X.X. Xu, S. Bhattacharjee and K. Agarwal for their support in reviewing literature and assembling the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William E. Gent, Grace M. Busse or Kurt Z. House.

Ethics declarations

Competing interests

K.Z.H. is a shareholder in and an employee of KoBold Metals, a battery metals exploration company that owns economic interests in several deposits believed to be rich in nickel as well as to contain minor contributions of cobalt and platinum group elements. KoBold is actively exploring for copper, lithium, cobalt and nickel. W.E.G. is also a shareholder in KoBold Metals, and he is separately employed by Sila Nanotechnologies, a battery materials design and manufacturing company. In his role at Sila, W.E.G. regularly considers performance/cost trade-offs of raw materials.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 3a

RGB arrays for each panel in Fig. 3a. Each sheet contains the RGB data for the correspondingly titled heatmap in Fig. 3a. The RGB images are 300×300 pixels, and the R, G, and B matrices are concatenated horizontally (that is [R,G,B]) in each sheet, such that each sheet contains a 300×900 array.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gent, W.E., Busse, G.M. & House, K.Z. The predicted persistence of cobalt in lithium-ion batteries. Nat Energy 7, 1132–1143 (2022). https://doi.org/10.1038/s41560-022-01129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01129-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing