Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Using ammonia as a shipping fuel could disturb the nitrogen cycle

An Author Correction to this article was published on 14 March 2023

This article has been updated

Ammonia has been proposed as a shipping fuel, yet potential adverse side-effects are poorly understood. We argue that if nitrogen releases from ammonia are not tightly controlled, the scale of the demands of maritime transport are such that the global nitrogen cycle could be substantially altered.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global anthropogenic reactive nitrogen production by source, 2000–2015.

Change history

References

  1. IPCC Climate Change 2018: Summary for Policymakers. In Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (IPCC, 2018).

  2. Fourth IMO GHG Study 2020 (IMO, 2020); https://www.imo.org/en/OurWork/145Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx

  3. Bird, F., Clarke, A., Davies, P. & Surkovic, E. Ammonia: Zero–Carbon Fertiliser, Fuel and Energy Store (The Royal Society, 2020); https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf

  4. Imhoff, T. B., Gkantonas, S. & Mastorakos, E. Energies 14, 7447 (2021).

  5. Stolz, B., Held, M., Georges, G. & Boulouchos, K. Nat. Energy 7, 203–212 (2022).

  6. Yapicioglu, A. & Dincer, I. Renew. Sustain. Energy Rev. 103, 96–108 (2019).

  7. Gruber, N. & Galloway, J. N. Nature 451, 293–296 (2008).

  8. Steffen, W. et al. Science 347, 1259855 (2015).

  9. Cho, C. P., Pyo, Y. D., Jang, J. Y., Kim, G. C. & Shin, Y. J. Appl. Therm. Eng. 110, 18–24 (2017).

  10. Gill, S. S., Chatha, G. S., Tsolakis, A., Golunski, S. E. & York, A. P. E. Int. J. Hydro. En. 37, 6074–6083 (2012).

  11. Kumar, A., Kamasamudram, K., Currier, N. & Yezerets, A. SCR Architectures for Low N 2 O Emissions (SAE Technical Paper No. 2015-01-1030, 2015).

  12. Chmielarz, L. & Jabłońska, M. RSC Adv. 5, 43408–43431 (2015).

  13. Derwent, R. G. et al. Int. J. Hydro. En. 45, 9211–9221 (2020).

  14. 2017 national emissions inventory (NEI) data (USEPA, 2021); https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data

  15. Lhuillier, C., Brequigny, P., Contino, F. & Mounaïm-Rousselle, C. Fuel 269, 117448 (2020).

  16. Tan, P. Q., Zhang, S. C., Wang, S. Y., Hu, Z. Y. & Lou, D. M. J. Energy Inst. 93, 2280–2292 (2020).

  17. Kröcher, O. & Elsener, M. Appl. Catal. B 77, 215–227 (2008).

  18. Ichikawa, Y., Niki, Y., Takasaki, K., Kobayashi, H. & Miyanagi, A. Appl. Energy Combust. Sci. 10, 100071 (2022).

  19. Galloway, J. N. et al. Bioscience 53, 341–356 (2003).

  20. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories (IGES, 2006).

  21. Signor, D., Cerri, C. E. P. & Conant, R. Environ. Res. Lett. 8, 015013 (2013).

  22. Soil nutrient budget, fertilizers by nutrient (FAOSTAT, 2022); https://www.fao.org/faostat/en/#data/ESB

  23. O’Rourke, P. R. et al. CEDS v_2021_02_05 Release Emission Data (Zenodo, 2021); https://zenodo.org/record/4509372#.Yyyml-zMLdo

  24. IPCC Climate Change 2013: Anthropogenic and natural radiative forcing (eds Myhre, G. et al.) (IPCC, 2014).

Download references

Acknowledgements

In the course of our research, we reached out to a large network of scientists specializing in a variety of relevant fields, including nitrogen cycling, energy modeling, emissions estimation, and combustion physics. Their contributions were essential for this Comment. We wish to thank especially Felix Leach, Jasper Verschuur, Rene Banares (Oxford Uni), Martin Haigh (Shell), Epaminondas Mastorakos, Pedro M. de Oliveira (Cambridge Uni), David McCollum (ORNL), Matteo Craglia, Luis Martinez (ITF/OECD), Christopher Ramig (US EPA), Jackson Bryan (Uni Georgia), Bryan Comer, Dan Rutherford (ICCT), Maridee Weber, Haewon McJeon, Jay Fuhrman, and Patrick O’Rourke (JGCRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wolfram.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Eiko Nemitz, Agustin Valera-Medina and Elizabeth Lindstad for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfram, P., Kyle, P., Zhang, X. et al. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat Energy 7, 1112–1114 (2022). https://doi.org/10.1038/s41560-022-01124-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01124-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene