Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact

Abstract

Lightweight flexible perovskite solar cells are promising for building integrated photovoltaics, wearable electronics, portable energy systems and aerospace applications. However, their highest certified efficiency of 19.9% lags behind their rigid counterparts (highest 25.7%), mainly due to defective interfaces at charge-selective contacts with perovskites on top. Here we use a mixture of two hole-selective molecules based on carbazole cores and phosphonic acid anchoring groups to form a self-assembled monolayer and bridge perovskite with a low temperature-processed NiO nanocrystal film. The hole-selective contact mitigates interfacial recombination and facilitates hole extraction. We show flexible all-perovskite tandem solar cells with an efficiency of 24.7% (certified 24.4%), outperforming all types of flexible thin-film solar cell. We also report 23.5% efficiency for larger device areas of 1.05 cm2. The molecule-bridged interfaces enable significant bending durability of flexible all-perovskite tandem solar cells that retain their initial performance after 10,000 cycles of bending at a radius of 15 mm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photovoltaic performance of flexible WBG PSCs with molecule-bridged hole-selective contact.
Fig. 2: Characterization of WBG perovskite films.
Fig. 3: Charge carrier dynamics at hole-selective contacts.
Fig. 4: Photovoltaic performance of flexible all-perovskite tandem solar cells with MB-NiO.

Data availability

The main data supporting the findings of this study are available within the published article and its Supplementary Information and source data files. Additional data are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Yang, D., Yang, R., Priya, S. & Liu, S. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew. Chem. Int. Ed. 58, 4466–4483 (2019).

    Article  Google Scholar 

  2. Tavakoli, M. M. et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9, 10287–10295 (2015).

    Article  Google Scholar 

  3. Ling, H., Liu, S., Zheng, Z. & Yan, F. Organic flexible electronics. Small Methods 2, 1800070 (2018).

    Article  Google Scholar 

  4. Hashemi, S. A., Ramakrishna, S. & Aberle, A. G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 13, 685–743 (2020).

    Article  Google Scholar 

  5. Long, J. et al. Flexible perovskite solar cells: device design and perspective. Flex. Print. Electron. 5, 013002 (2020).

    Article  Google Scholar 

  6. Heo, J. H., Lee, D. S., Shin, D. H. & Im, S. H. Recent advancements in and perspectives on flexible hybrid perovskite solar cells. J. Mater. Chem. A 7, 888–900 (2019).

    Article  Google Scholar 

  7. Mujahid, M., Chen, C., Hu, W., Wang, Z.-K. & Duan, Y. Progress of high-throughput and low-cost flexible perovskite solar cells. Sol. RRL 4, 1900556 (2020).

    Article  Google Scholar 

  8. Kumar, M. H. et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013).

    Article  Google Scholar 

  9. Chung, J. et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ. Sci. 13, 4854–4861 (2020).

    Article  Google Scholar 

  10. Yang, L. et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9, 1574–1582 (2021).

    Article  Google Scholar 

  11. Wu, S. et al. Low-bandgap organic bulk-heterojunction enabled efficient and flexible perovskite solar cells. Adv. Mater. 33, 2105539 (2021).

    Article  Google Scholar 

  12. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2022).

  13. Zardetto, V., Brown, T. M., Reale, A. & Di Carlo, A. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. B 49, 638–648 (2011).

    Article  Google Scholar 

  14. Zeng, P., Deng, W. & Liu, M. Recent advances of device components toward efficient flexible perovskite solar cells. Sol. RRL 4, 1900485 (2020).

    Article  Google Scholar 

  15. Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133–138 (2014).

    Article  Google Scholar 

  16. Shin, S. S. et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015).

    Article  Google Scholar 

  17. Dong, Q. et al. Improved SnO2 electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies. Adv. Energy Mater. 9, 1900834 (2019).

    Article  Google Scholar 

  18. Hu, X. et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29, 1703236 (2017).

    Article  Google Scholar 

  19. Bi, C., Chen, B., Wei, H., DeLuca, S. & Huang, J. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 29, 1605900 (2017).

    Article  Google Scholar 

  20. Yin, X. et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano 10, 3630–3636 (2016).

    Article  Google Scholar 

  21. Ma, F. et al. Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393–411 (2020).

    Article  Google Scholar 

  22. Yin, X., Guo, Y., Xie, H., Que, W. & Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 3, 1900001 (2019).

    Article  Google Scholar 

  23. Wang, Q. et al. Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. ChemSusChem 10, 3794–3803 (2017).

    Article  Google Scholar 

  24. Cheng, Y. et al. Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy 61, 496–504 (2019).

    Article  Google Scholar 

  25. Ru, P. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020).

    Article  Google Scholar 

  26. Du, Y. et al. Polymeric surface modification of NiOx-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain. Chem. Eng. 6, 16806–16812 (2018).

    Article  Google Scholar 

  27. Zhang, S. et al. Printable and homogeneous NiOx hole transport layers prepared by a polymer-network gel method for large-area and flexible perovskite solar cells. Adv. Funct. Mater. 31, 2106495 (2021).

    Article  Google Scholar 

  28. Boyd, C. C. et al. Overcoming redox reactions at perovskite–nickel oxide interfaces to boost voltages in perovskite solar cells. Joule 4, 1759–1775 (2020).

    Article  Google Scholar 

  29. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  30. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  Google Scholar 

  31. Tong, J. et al. Carrier lifetimes of >1 μs in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  Google Scholar 

  32. Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    Article  Google Scholar 

  33. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  Google Scholar 

  34. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  Google Scholar 

  35. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  Google Scholar 

  36. Ali, F., Roldán-Carmona, C., Sohail, M. & Nazeeruddin, M. K. Applications of self-assembled monolayers for perovskite solar cells interface engineering to address efficiency and stability. Adv. Energy Mater. 10, 2002989 (2020).

    Article  Google Scholar 

  37. Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. J. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells. Adv. Energy Mater. 10, 2002606 (2020).

    Article  Google Scholar 

  38. Choi, K. et al. A short review on interface engineering of perovskite solar cells: a self-assembled monolayer and its roles. Sol. RRL 4, 1900251 (2020).

    Article  Google Scholar 

  39. Aktas, E. et al. Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy Environ. Sci. 14, 3976–3985 (2021).

    Article  Google Scholar 

  40. Magomedov, A. et al. Self-assembled hole transporting monolayer for highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1801892 (2018).

    Article  Google Scholar 

  41. Phung, N. et al. Enhanced self-assembled monolayer surface coverage by ALD NiO in p–i–n perovskite solar cells. ACS Appl. Mater. Interfaces 14, 2166–2176 (2022).

    Article  Google Scholar 

  42. Singh, N. & Tao, Y. Effect of surface modification of nickel oxide hole-transport layer via self-assembled monolayers in perovskite solar cells. Nano Select 2, 2390–2399 (2021).

    Article  Google Scholar 

  43. Yalcin, E. et al. Semiconductor self-assembled monolayers as selective contacts for efficient PiN perovskite solar cells. Energy Environ. Sci. 12, 230–237 (2019).

    Article  Google Scholar 

  44. Rezaei Kolahchi, A., Carreau, P. J. & Ajji, A. Surface roughening of PET films through blend phase coarsening. ACS Appl. Mater. Interfaces 6, 6415–6424 (2014).

    Article  Google Scholar 

  45. Yoon, H., Kang, S. M., Lee, J. K. & Choi, M. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262–2266 (2016).

    Article  Google Scholar 

  46. Shen, L. et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Mater. Horiz. 4, 242–248 (2017).

    Article  Google Scholar 

  47. Lange, I. et al. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 24, 7014–7024 (2014).

    Article  Google Scholar 

  48. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  Google Scholar 

  49. Kiermasch, D. et al. Unravelling steady-state bulk recombination dynamics in thick efficient vacuum-deposited perovskite solar cells by transient methods. J. Mater. Chem. A 7, 14712–14722 (2019).

    Article  Google Scholar 

  50. Wolff, C. M. et al. Orders of recombination in complete perovskite solar cells-linking time-resolved and steady-state measurements. Adv. Energy Mater. 11, 2101823 (2021).

    Article  Google Scholar 

  51. Abate, A. et al. Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247–3254 (2014).

    Article  Google Scholar 

  52. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article  Google Scholar 

  53. Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  Google Scholar 

  54. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  Google Scholar 

  55. Caprioglio, P. et al. On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).

    Article  Google Scholar 

  56. Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article  Google Scholar 

  57. Kim, J., Chung, C.-H. & Hong, K.-H. Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys. Chem. Chem. Phys. 18, 27143–27147 (2016).

    Article  Google Scholar 

  58. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  59. Park, S. et al. Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77, 134103 (2008).

    Article  Google Scholar 

  60. Luo, X. et al. Record photocurrent density over 26 mA cm−2 in planar perovskite solar cells enabled by antireflective cascaded electron transport layer. Sol. RRL 4, 2000169 (2020).

    Article  Google Scholar 

  61. Dai, Z. et al. Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science 372, 618–622 (2021).

    Article  Google Scholar 

  62. Ramirez, C., Yadavalli, S. K., Garces, H. F., Zhou, Y. & Padture, N. P. Thermo-mechanical behavior of organic–inorganic halide perovskites for solar cells. Scr. Mater. 150, 36–41 (2018).

    Article  Google Scholar 

  63. Dong, Q. et al. Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nat. Commun. 12, 973 (2021).

    Article  Google Scholar 

  64. Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article  Google Scholar 

  65. Dong, Q. et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5, 1587–1601 (2021).

    Article  Google Scholar 

  66. Meng, X. et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020).

    Article  Google Scholar 

  67. Yang, M. et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Adv. Mater. 27, 6363–6370 (2015).

    Article  Google Scholar 

  68. Hambsch, M., Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Efficient, monolithic large area organohalide perovskite solar cells. J. Mater. Chem. A 4, 13830–13836 (2016).

    Article  Google Scholar 

  69. Castro-Hermosa, S., Top, M., Dagar, J., Fahlteich, J. & Brown, T. M. Quantifying performance of permeation barrier-encapsulation systems for flexible and glass-based electronics and their application to perovskite solar cells. Adv. Electron. Mater. 5, 1800978 (2019).

    Article  Google Scholar 

  70. Wolff, C. M. et al. Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano 14, 1445–1456 (2020).

    Article  Google Scholar 

  71. Han, Q. et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb–Sn low-bandgap perovskite solar cells. Sci. Bull. 64, 1399–1401 (2019).

    Article  Google Scholar 

  72. Deng, X. et al. Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. Nano Energy 46, 356–364 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61974063, U21A2076, 61904109, 62125402), Natural Science Foundation of Jiangsu Province (BK20202008, BK20190315), Fundamental Research Funds for the Central Universities (0213/14380206; 0205/14380252), the Technology Innovation Fund of Nanjing University, Frontiers Science Center for Critical Earth Material Cycling Fund (DLTD2109), the Program A for Outstanding PhD Candidate of Nanjing University and Program for Innovative Talents and Entrepreneur in Jiangsu. Calculations were performed in part at the high-performance computing centre of Jilin University. We thank W. Cai and L. Zhou from Horiba for their help on TRPL measurements.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived and directed the overall project. H.T. and L.Z. supervised the work. L.L., Y. Wang and R.L. fabricated all the devices and conducted the characterization. X.L., Z.L., K.X., Z.Z., Y. Wu and M.I.S. helped with the device fabrication and material characterization. X.W., K.Z. and L.Z. carried out the density functional theory and finite element simulations. S.X. and Q.B. performed the UPS measurements. G.C. and Z.L. performed the GIWAXS measurements. Y.T. and L.L. performed the steady-state and transient PL measurements, respectively. Y.D. carried out the SEM measurements. L.L. and J.W. performed the PLQY measurements. H.L. and C.-Q.M. performed the SFG spectrum. L.L., L.Z. and H.T. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Lijun Zhang or Hairen Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Fan Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Notes 1–6, Tables 1–7 and References 1–45.

Reporting Summary.

Supplementary Data 1

PV parameters of flexible WBG PSCs shown in Supplementary Fig. 9.

Supplementary Data 2

PV parameters of rigid WBG PSCs shown in Supplementary Fig. 15.

Supplementary Data 3

Grain size measurements of perovskite films shown in Supplementary Fig. 20c,d.

Supplementary Data 4

The individual values of the PLQY, QFLS and Voc-imp non-radiative recombination loss of the MB-NiO/perovskite junctions used in Supplementary Table 4.

Supplementary Data 5

The individual values of the PLQY and QFLS of the HTL/perovskite/C60 junctions used in Supplementary Table 5.

Supplementary Data 6

The individual values of the PLQY, QFLS and Voc-imp non-radiative recombination loss of different perovskite junctions used in Table 1.

Source data

Source Data Fig. 1

PV parameters of flexible WBG PSCs shown in Fig. 1c.

Source Data Fig. 4

PV parameters of flexible all-perovskite tandem solar cells shown in the Fig. 4e inset.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, Y., Wang, X. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy 7, 708–717 (2022). https://doi.org/10.1038/s41560-022-01045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01045-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing