Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogel protection strategy to stabilize water-splitting photoelectrodes

Abstract

Photoelectrochemical water splitting is an attractive solar-to-hydrogen pathway. However, the lifetime of photoelectrochemical devices is hampered by severe photocorrosion of semiconductors and instability of co-catalysts. Here we report a strategy for stabilizing photoelectrochemical devices that use a polyacrylamide hydrogel as a highly permeable and transparent device-on-top protector. A hydrogel-protected Sb2Se3 photocathode exhibits stability over 100 h, maintaining ~70% of the initial photocurrent, and the degradation rate gradually decreases to the saturation level. The structural stability of a Pt/TiO2/Sb2Se3 photocathode remains unchanged beyond this duration, and effective bubble escape is ensured through the micro gas tunnel formed in the hydrogel to achieve a mechanically stable protector. We demonstrate the versatility of the device-on-top hydrogel protector under a wide electrolyte pH range and by using a SnS photocathode and a BiVO4 photoanode with ~500 h of lifetime.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Highly permeable and transparent device-on-top hydrogel protector of the PEC device.
Fig. 2: PEC characteristics of the Sb2Se3 photocathodes with and without the device-on-top hydrogel protector.
Fig. 3: Enhancement of catalyst stability by the device-on-top hydrogel protector.
Fig. 4: Suppression of TiO2 photocorrosion by the device-on-top hydrogel protector.
Fig. 5: Effect of PAAM monomer concentration on the bubble dynamics in the device-on-top hydrogel protector.
Fig. 6: Effect of hydrogel thickness on the bubble dynamics in the device-on-top hydrogel protector.
Fig. 7: Generation and effective escape of the hydrogen bubble through the micro gas tunnel formed in the device-on-top hydrogel protector.
Fig. 8: Versatility of the device-on-top hydrogel protector.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Article  Google Scholar 

  2. Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  Google Scholar 

  3. Ardo, S. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 11, 2768–2783 (2018).

    Article  Google Scholar 

  4. Chen, S. & Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

    Article  Google Scholar 

  5. Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).

    Article  Google Scholar 

  6. Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).

    Article  Google Scholar 

  7. Tan, J. et al. Fullerene as a photoelectron transfer promoter enabling stable TiO2-protected Sb2Se3 photocathodes for photo-electrochemical water splitting. Adv. Energy Mater. 9, 1900179 (2019).

    Article  Google Scholar 

  8. Yang, W. et al. Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 11, 861 (2020).

    Article  Google Scholar 

  9. Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. & Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456–461 (2011).

    Article  Google Scholar 

  10. Rojas, H. C. et al. Polymer-based photocathodes with a solution-processable cuprous iodide anode layer and a polyethyleneimine protective coating. Energy Environ. Sci. 9, 3710–3723 (2016).

    Article  Google Scholar 

  11. Yang, W. et al. Adjusting the anisotropy of 1D Sb2Se3 nanostructures for highly efficient photoelectrochemical water splitting. Adv. Energy Mater. 8, 1702888 (2018).

    Article  Google Scholar 

  12. Rovelli, L., Tilley, S. D. & Sivula, K. Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. ACS Appl. Mater. Interfaces 5, 8018–8024 (2013).

    Article  Google Scholar 

  13. Koo, B. et al. Reduced graphene oxide as a catalyst binder: greatly enhanced photoelectrochemical stability of Cu(In,Ga)Se2 photocathode for solar water splitting. Adv. Funct. Mater. 28, 1705136 (2018).

    Article  Google Scholar 

  14. Tilley, S. D., Schreier, M., Azevedo, J., Stefik, M. & Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 24, 303–311 (2014).

    Article  Google Scholar 

  15. Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Grätzel, M. & Hu, X. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 5, 3059 (2014).

    Article  Google Scholar 

  16. Labrador, N. Y. et al. Enhanced performance of Si MIS photocathodes containing oxide-coated nanoparticle electrocatalysts. Nano Lett. 16, 6452–6459 (2016).

    Article  Google Scholar 

  17. Vanka, S. et al. InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy Lett. 5, 3741–3751 (2020).

    Article  Google Scholar 

  18. Yin, Z., Fan, R., Huang, G. & Shen, M. 11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact. Chem. Commun. 54, 543–546 (2018).

    Article  Google Scholar 

  19. Tilley, S. D. Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv. Energy Mater. 9, 1802877 (2019).

    Article  Google Scholar 

  20. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 10, 492–501 (2014).

    Article  Google Scholar 

  21. Show, K.-Y. et al. Hydrogen production from algal biomass—advances, challenges and prospects. Bioresour. Technol. 257, 290–300 (2018).

    Article  Google Scholar 

  22. Le Bail, A., Billoud, B., Le Panse, S., Chenivesse, S. & Charrier, B. ETOILE regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. Plant Cell 23, 1666–1678 (2011).

    Article  Google Scholar 

  23. Rabillé, H. et al. Alginates along the filament of the brown alga Ectocarpus help cells cope with stress. Sci. Rep. 9, 12956 (2019).

    Article  Google Scholar 

  24. Tesson, B. & Charrier, B. Brown algal morphogenesis: atomic force microscopy as a tool to study the role of mechanical forces. Front. Plant Sci. 5, 471 (2014).

    Article  Google Scholar 

  25. Domozych, D. S., Kozel, L. & Palacio-Lopez, K. The effects of osmotic stress on the cell wall–plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. Protoplasma 258, 1231–1249 (2021).

    Article  Google Scholar 

  26. Su, X. & Chen, B. Transparent, UV-proof and mechanically strong montmorillonite/alginate/Ca2+ nanocomposite hydrogel films with solvent sensitivity. Appl. Clay Sci. 165, 223–233 (2018).

    Article  Google Scholar 

  27. Ahmad Raus, R., Wan Nawawi, W. M. F. & Nasaruddin, R. R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 16, 280–306 (2021).

    Article  Google Scholar 

  28. Jeon, D. et al. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Sci. Adv. 6, eaaz3944 (2020).

    Article  Google Scholar 

  29. Wang, L. et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017).

    Article  Google Scholar 

  30. Li, Z. et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019).

    Article  Google Scholar 

  31. Chen, C. et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10, 18–30 (2017).

    Article  Google Scholar 

  32. Tong, J. & Anderson, J. L. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys. J. 70, 1505–1513 (1996).

    Article  Google Scholar 

  33. Fischer, R. S., Myers, K. A., Gardel, M. L. & Waterman, C. M. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat. Protoc. 7, 2056–2066 (2012).

    Article  Google Scholar 

  34. Huang, C. & Guo, Z. The wettability of gas bubbles: from macro behavior to nano structures to applications. Nanoscale 10, 19659–19672 (2018).

    Article  Google Scholar 

  35. Takahashi, R. et al. Tough particle-based double network hydrogels for functional solid surface coatings. Adv. Mater. Interfaces 5, 1801018 (2018).

    Article  Google Scholar 

  36. Pan, L. et al. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018).

    Article  Google Scholar 

  37. Paracchino, A. et al. Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ. Sci. 5, 8673–8681 (2012).

    Article  Google Scholar 

  38. Paciok, P., Schalenbach, M., Carmo, M. & Stolten, D. On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis. J. Power Sources 365, 53–60 (2017).

    Article  Google Scholar 

  39. Galeano, C. et al. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 134, 20457–20465 (2012).

    Article  Google Scholar 

  40. Wen, J. H. et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13, 979–987 (2014).

    Article  Google Scholar 

  41. Shiva, A. H., Teasdale, P. R., Bennett, W. W. & Welsh, D. T. A systematic determination of diffusion coefficients of trace elements in open and restricted diffusive layers used by the diffusive gradients in a thin film technique. Anal. Chim. Acta 888, 146–154 (2015).

    Article  Google Scholar 

  42. Scheiner, S. & Hellmich, C. Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corros. Sci. 49, 319–346 (2007).

    Article  Google Scholar 

  43. Kundu, S. & Crosby, A. J. Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5, 3963–3968 (2009).

    Article  Google Scholar 

  44. Lai, Y. & Hu, Y. Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. Soft Matter 14, 2619–2627 (2018).

    Article  Google Scholar 

  45. Angulo, A., Linde, P. V. D., Gardeniers, H., Modestino, M. & Rivas, D. F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4, 555–579 (2020).

    Article  Google Scholar 

  46. Lu, Z. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 26, 2683–2687 (2014).

    Article  Google Scholar 

  47. Lee, D. K. & Choi, K.-S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53 (2018).

    Article  Google Scholar 

  48. Koons, G. L., Diba, M. & Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020).

    Article  Google Scholar 

  49. Shi, Y., Ilic, O., Atwater, H. A. & Greer, J. R. All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021).

    Article  Google Scholar 

  50. Lewus, R. K. & Carta, G. Protein diffusion in charged polyacrylamide gels. Vis. Anal. J. Chromatogr. A 865, 155–168 (1999).

    Article  Google Scholar 

  51. Branco, M. C., Pochan, D. J., Wagner, N. J. & Schneider, J. P. Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels. Biomaterials 30, 1339–1347 (2009).

    Article  Google Scholar 

  52. Chang, S. et al. Multi-scale characterization of surface-crosslinked superabsorbent polymer hydrogel spheres. Polymer 145, 174–183 (2018).

    Article  Google Scholar 

  53. Choi, S. et al. Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J. Control. Release 327, 571–583 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) of Korea grant (numbers 2021R1A3B1068920 (J.M.), 2021M3H4A1A03049662 (J.M.), 2021R1A2C2009070 (Hyungsuk Lee) and 2021R1I1A1A01060058 (J.T.)), funded by the Ministry of Science and ICT. This research was also supported by the Yonsei Signature Research Cluster Program of 2021 (2021–22-0002, J.M.). We thank M. Na for TEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.T., B.K., Hyungsuk Lee, and J.M. conceived the project idea. J.T. and B.K. conducted experiments, analysed the data and drafted the manuscript. K.K. conducted the experiments and analysed the data. D.K. conducted a simulation-based analysis. Hyungsoo Lee, S.M. and G.J. supported the experiments. Hyungsuk Lee and J.M. supervised the project, directed the research and contributed to writing the manuscript.

Corresponding authors

Correspondence to Hyungsuk Lee or Jooho Moon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Notes 1–6 and Tables 1–8.

Supplementary Video 1

Propagation of stress during the bubble expansion in the hydrogel protectors with thicknesses of R, 2 R and 10 R. Here R denotes the final radius of the bubble. Scale bar represents 2 μm.

Supplementary Video 2

High-speed imaging of the bubble growth and escape in PAAM. Scale bar represents 100 μm.

Supplementary Video 3

High-speed imaging of the bubble growth and detachment in No PAAM. Scale bar represents 100 μm.

Supplementary Data 1

Source data for Supplementary Figs. 1–5, 8, 9, 16, 17, 19–21 and 23–26.

Source data

Source Data Fig. 2

Source data for Fig. 2a,b,c,d,e.

Source Data Fig. 4

Source data for Fig. 4b.

Source Data Fig. 5

Source data for Fig. 5a.

Source Data Fig. 6

Source data for Fig. 6a,b.

Source Data Fig. 8

Source data for Fig. 8a,b,c,d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Kang, B., Kim, K. et al. Hydrogel protection strategy to stabilize water-splitting photoelectrodes. Nat Energy 7, 537–547 (2022). https://doi.org/10.1038/s41560-022-01042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01042-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing