Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers

Abstract

CO2 emissions can be recycled via low-temperature CO2 electrolysis to generate products such as carbon monoxide, ethanol, ethylene, acetic acid, formic acid and propanol. In recent years, progress has been made towards an industrially relevant performance by leveraging the development of gas diffusion electrodes (GDEs), which enhance the mass transport of reactant gases (for example, CO2) to the active electrocatalyst. Innovations in GDE design have thus set new benchmarks for CO2 conversion activity. In this Review, we discuss GDE-based CO2 electrolysers, in terms of reactor designs, GDE composition and failure modes, to identify the key advances and remaining shortfalls of the technology. This is combined with an overview of the partial current densities, efficiencies and stabilities currently achieved and an outlook on how phenomena such as carbonate formation could influence the future direction of the field. Our aim is to capture insights that can accelerate the development of industrially relevant CO2 electrolysers.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: CO2 electrolysis on a GDE.
Fig. 2: Components of a GDE CO2 electrolyser.
Fig. 3: Benchmarks in potential-dependent activity.
Fig. 4: C2 reaction pathways and common failure modes on GDE reactor cathodes.
Fig. 5: Metrics and progress in activity.
Fig. 6: Durability of reported CO2 electrolysers and the lowest achievable overpotentials.

References

  1. IPCC Special Report Global Warming of 1.5°C (eds. Masson-Delmotte, V. et al.) Ch. 1 (WMO, 2018).

  2. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    Google Scholar 

  3. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Google Scholar 

  4. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Google Scholar 

  5. Verma, S. et al. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    Google Scholar 

  6. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) 89–189 (Springer, 2008).

  7. Sander, R. Compilation of Henry’s law constants, version 3.99. Atmos. Chem. Phys. Discuss. 14, 29615–30521 (2014).

    Google Scholar 

  8. Tamimi, A., Rinker, E. B. & Sandall, O. C. Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293–368 K. J. Chem. Eng. Data 39, 330–332 (1994).

    Google Scholar 

  9. Liu, K., Smith, W. A. & Burdyny, T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction. ACS Energy Lett. 4, 639–643 (2019).

    Google Scholar 

  10. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Google Scholar 

  11. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    Google Scholar 

  12. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020). The use of a PiperION membrane in a MEA reactor achieved current densities of > 1 A cm−2 for CO production from CO2.

    Google Scholar 

  13. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020). The combination of ionomer and catalyst particles to increase the diffusion of CO2 to the active catalyst surface, achieving a peak current density for ethylene production of 1.3 A cm−2.

    Google Scholar 

  14. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Google Scholar 

  15. Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017). A report detailing the synthesis of Sustainion membranes and their use in MEA reactors achieving six months of continuous operation.

    Google Scholar 

  16. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Google Scholar 

  17. Chen, Y. et al. A robust, scalable platform for the electrochemical conversion of CO2 to formate: identifying pathways to higher energy efficiencies. ACS Energy Lett. 5, 1825–1833 (2020). A reactor design containing a bipolar membrane and flowing catholyte for the production of formic acid that could achieve 500 mA cm−2 on a 25 cm2 gas diffusion electrode.

    Google Scholar 

  18. Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Google Scholar 

  19. Lv, J.-J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Google Scholar 

  20. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Google Scholar 

  21. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Google Scholar 

  22. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Google Scholar 

  23. Guo, J.-H., Zhang, X.-Y., Dao, X.-Y. & Sun, W.-Y. Nanoporous metal–organic framework-based ellipsoidal nanoparticles for the catalytic electroreduction of CO2. ACS Appl. Nano Mater. 3, 2625–2635 (2020).

    Google Scholar 

  24. Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    Google Scholar 

  25. Bhargava, S. S. et al. System design rules for intensifying the electrochemical reduction of CO2 to CO on Ag nanoparticles. ChemElectroChem 7, 2001–2011 (2020). An in-depth study of Ag nanoparticle cathodes and their operating conditions for CO production, achieving a partial current density of 866 mA cm−2 at 43% energy efficiency.

    Google Scholar 

  26. Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    Google Scholar 

  27. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Google Scholar 

  28. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Google Scholar 

  29. Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466–474 (2019).

    Google Scholar 

  30. Oener, S. Z., Ardo, S. & Boettcher, S. W. Ionic processes in water electrolysis: the role of ion-selective membranes. ACS Energy Lett. 2, 2625–2634 (2017).

    Google Scholar 

  31. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

    Google Scholar 

  32. Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Google Scholar 

  33. Larrazábal, G. O. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41228 (2019). An analysis of how CO2 moves throughout a reactor during CO2 electrolysis, highlighting the importance of calculating the carbon mass balance, particularly when quantifying activity.

    Google Scholar 

  34. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Google Scholar 

  35. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020). An overview of how the formation of carbonate lowers the efficiency of many CO2 reactor designs, highlighting the importance of new developments to advance the technology.

    Google Scholar 

  36. Dufek, E. J., Lister, T. E. & McIlwain, M. E. Bench-scale electrochemical system for generation of CO and syn-gas. J. Appl. Electrochem. 41, 623–631 (2011).

    Google Scholar 

  37. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Google Scholar 

  38. Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018).

    Google Scholar 

  39. Chen, C., Li, Y. & Yang, P. Address the ‘alkalinity problem’ in CO2 electrolysis with catalyst design and translation. Joule 5, 737–742 (2021).

    Google Scholar 

  40. Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

    Google Scholar 

  41. McCrum, I. T., Akhade, S. A. & Janik, M. J. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: a density functional theory study. Electrochim. Acta 173, 302–309 (2015).

    Google Scholar 

  42. Gao, D., Scholten, F. & Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 7, 5112–5120 (2017).

    Google Scholar 

  43. Endrődi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Google Scholar 

  44. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    Google Scholar 

  45. Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    Google Scholar 

  46. Liu, Z. et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J. CO2 Util. 15, 50–56 (2016).

  47. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Google Scholar 

  48. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Google Scholar 

  49. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

  50. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). The use of a solid electrolyte device for the generation and isolation of formic acid, ethanol, acetic acid and n-propanol.

    Google Scholar 

  51. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Electrochemical conversion of CO2 to formic acid utilizing Sustainion membranes. J. CO2 Util. 20, 208–217 (2017).

  52. Ma, S., Luo, R., Moniri, S., Lan, Y. & Kenis, P. J. A. Efficient electrochemical flow system with improved anode for the conversion of CO2 to CO. J. Electrochem. Soc. 161, F1124–F1131 (2014).

    Google Scholar 

  53. Jhong, H.-R. M. et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. ChemSusChem 10, 1094–1099 (2017).

    Google Scholar 

  54. Lee, W. H. et al. Highly selective and scalable CO2 to CO—electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy 76, 105030 (2020).

    Google Scholar 

  55. Ma, S., Liu, J., Sasaki, K., Lyth, S. M. & Kenis, P. J. A. Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technol. 5, 861–863 (2017).

  56. Ma, S. et al. Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 4, 8573–8578 (2016).

    Google Scholar 

  57. Kim, B. et al. Over a 15.9% solar-to-CO conversion from dilute CO2 streams catalyzed by gold nanoclusters exhibiting a high CO2 binding affinity. ACS Energy Lett. 5, 749–757 (2020).

    Google Scholar 

  58. Zhang, T. et al. Nickel–nitrogen–carbon molecular catalysts for high rate CO2 electro-reduction to CO: on the role of carbon substrate and reaction chemistry. ACS Appl. Energy Mater. 3, 1617–1626 (2020).

    Google Scholar 

  59. Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Google Scholar 

  60. Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020).

    Google Scholar 

  61. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Google Scholar 

  62. Torbensen, K. et al. Iron porphyrin allows fast and selective electrocatalytic conversion of CO2 to CO in a flow cell. Chem. Eur. J. 26, 3034–3038 (2020).

    Google Scholar 

  63. Corral, D. et al. Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2. Energy Environ. Sci. 14, 3064–3074 (2021). The use of a Cu catalyst in the presence of nitrogen-doped carbon reduces the deoxygenation of HOCCH intermediates to achieve 52% selectivity for ethanol formation.

    Google Scholar 

  64. Li, Y. C. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019).

    Google Scholar 

  65. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Google Scholar 

  66. She, X. et al. Tandem electrodes for carbon dioxide reduction into C2+ products at simultaneously high production efficiency and rate. Cell Rep. Phys. Sci. 1, 100051 (2020).

    Google Scholar 

  67. Chen, C. et al. Cu–Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    Google Scholar 

  68. Karapinar, D., Creissen, C. E., Rivera de la Cruz, J. G., Schreiber, M. W. & Fontecave, M. electrochemical CO2 reduction to ethanol with copper-based catalysts. ACS Energy Lett. 6, 694–706 (2021).

    Google Scholar 

  69. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Google Scholar 

  70. Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019).

    Google Scholar 

  71. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Google Scholar 

  72. Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    Google Scholar 

  73. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Google Scholar 

  74. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Google Scholar 

  75. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Google Scholar 

  76. Xia, R., Zhang, S., Ma, X. & Jiao, F. Surface-functionalized palladium catalysts for electrochemical CO2 reduction. J. Mater. Chem. A https://doi.org/10.1039/D0TA03427D (2020).

    Article  Google Scholar 

  77. Wang, V. C.-C., Islam, S. T. A., Can, M., Ragsdale, S. W. & Armstrong, F. A. Investigations by protein film electrochemistry of alternative reactions of nickel-containing carbon monoxide dehydrogenase. J. Phys. Chem. B 119, 13690–13697 (2015).

    Google Scholar 

  78. Nwabara, U. O., Cofell, E. R., Verma, S., Negro, E. & Kenis, P. J. A. Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2. ChemSusChem 13, 855–875 (2020).

    Google Scholar 

  79. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Google Scholar 

  80. Wilde, P. et al. Is Cu instability during the CO2 reduction reaction governed by the applied potential or the local CO concentration? Chem. Sci. 12, 4028–4033 (2021).

    Google Scholar 

  81. Martić, N. et al. Ag2Cu2O3—a catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ. Sci. 13, 2993–3006 (2020).

    Google Scholar 

  82. Jovanov, Z. P., Ferreira de Araujo, J., Li, S. & Strasser, P. Catalyst preoxidation and EDTA electrolyte additive remedy activity and selectivity declines during electrochemical CO2 reduction. J. Phys. Chem. C. 123, 2165–2174 (2019).

    Google Scholar 

  83. Jeon, H. S., Kunze, S., Scholten, F. & Roldan Cuenya, B. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8, 531–535 (2018).

    Google Scholar 

  84. Ganesan, S. et al. Impact of cationic Impurities on low-Pt loading PEFC Cathodes. ECS Trans. 66, 19–27 (2015).

    Google Scholar 

  85. Chlistunoff, J., Davey, J. R., Rau, K. C., Mukundan, R. & Borup, R. L. PEMFC gas diffusion media degradation determined by acid–base titrations. ECS Trans. 50, 521–529 (2013).

    Google Scholar 

  86. Xu, Y. et al. Self-cleaning CO2 reduction systems: unsteady electrochemical forcing enables stability. ACS Energy Lett. 6, 809–815 (2021).

    Google Scholar 

  87. Dufek, E. J., Lister, T. E., Stone, S. G. & McIlwain, M. E. Operation of a pressurized system for continuous reduction of CO2. J. Electrochem. Soc. 159, F514–F517 (2012).

    Google Scholar 

  88. Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. A. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    Google Scholar 

  89. Edwards, J. P. et al. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Appl. Energy 261, 114305 (2020).

    Google Scholar 

  90. Li, H. & Oloman, C. Development of a continuous reactor for the electro-reduction of carbon dioxide to formate—part 2: scale-up. J. Appl. Electrochem. 37, 1107–1117 (2007).

    Google Scholar 

  91. Whipple, D. T., Finke, E. C. & Kenis, P. J. A. Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid-State Lett. 13, B109 (2010).

    Google Scholar 

  92. Lu, X., Leung, D. Y. C., Wang, H. & Xuan, J. A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Appl. Energy 194, 549–559 (2017).

    Google Scholar 

  93. Grigioni, I. et al. CO2 electroreduction to formate at a partial current density of 930 mA cm–2 with InP colloidal quantum dot derived catalysts. ACS Energy Lett. 6, 79–84 (2021).

    Google Scholar 

  94. Cook, R. L. High rate gas phase CO2 reduction to ethylene and methane using gas diffusion electrodes. J. Electrochem. Soc. 137, 607 (1990).

    Google Scholar 

  95. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Google Scholar 

  96. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    Google Scholar 

  97. Wang, X. et al. Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 5186 (2019).

    Google Scholar 

  98. Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Google Scholar 

  99. Jeanty, P. et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 24, 454–462 (2018).

  100. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    Google Scholar 

  101. Mohammadian, S. H., Aït-Kadi, D. & Routhier, F. Quantitative accelerated degradation testing: practical approaches. Reliab. Eng. Syst. Saf. 95, 149–159 (2010).

    Google Scholar 

  102. Dutta, A. et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 104331 (2020).

    Google Scholar 

  103. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Google Scholar 

  104. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Google Scholar 

  105. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    Google Scholar 

  106. Lu, X. et al. High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett. 3, 2527–2532 (2018).

    Google Scholar 

  107. Chen, J. et al. Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density. Mater. Today Phys. 12, 100176 (2020).

    Google Scholar 

  108. Ye, K. et al. In situ reconstruction of a hierarchical Sn–Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59, 4814–4821 (2020).

    Google Scholar 

  109. Lai, Q., Yang, N. & Yuan, G. Highly efficient In–Sn alloy catalysts for electrochemical reduction of CO2 to formate. Electrochem. Commun. 83, 24–27 (2017).

    Google Scholar 

  110. Lim, J., Kang, P. W., Jeon, S. S. & Lee, H. Electrochemically deposited Sn catalysts with dense tips on a gas diffusion electrode for electrochemical CO2 reduction. J. Mater. Chem. A 8, 9032–9038 (2020).

    Google Scholar 

Download references

Acknowledgements

D.W., S.L., D.C., J.W., A.S., S.A.J., M.F., E.H.S., T.F.J. and C.H. acknowledge financial support from TotalEnergies SE. D.C., J.F., A.C., E.D. and S.B. contributed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 within the LDRD program 19-SI-005 and CRADA TC02307, IM: LLNL-JRNL-818573. J.W. and E.H.S. acknowledge funding from the Natural Sciences and Engineering Research Council (NSERC) of Canada. D.W. acknowledges financial support from the Lindemann Trust Fellowship. S.L. was funded by the Corps des Ponts, des Eaux et des Forêts. J.W. acknowledges financial support from the Ontario Graduate Scholarship (OGS) program and the NSERC Postgraduate Scholarship—Doctoral (PGS-D) program. D.C. acknowledges financial support from the Stanford Graduate Fellowship (SGF) and GEM Fellowship at Stanford University and Lawrence Livermore National Laboratory, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward H. Sargent, Thomas F. Jaramillo or Christopher Hahn.

Ethics declarations

Competing interests

D.W. and S.L. are, respectively, the chief technology officer (CTO) and chief executive officer (CEO) of Dioxycle, which develops low-temperature CO2 electrolysers. A.S. and S.A.J. are full-time employees of TotalEnergies SE, which is sponsoring R&D programmes focused on the ‘development of a viable low-temperature CO2 electrocatalysis technology’ at Collège de France, Lawrence Livermore National Laboratory, Stanford University and the University of Toronto.

Peer review

Peer review information

Nature Energy thanks Angel Irabien, Haotian Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wakerley, D., Lamaison, S., Wicks, J. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy 7, 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00973-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing