Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of declining renewable energy costs on electrification in low-emission scenarios

An Author Correction to this article was published on 03 March 2022

This article has been updated

Abstract

Cost degression in photovoltaics, wind-power and battery storage has been faster than previously anticipated. In the future, climate policy to limit global warming to 1.5–2 °C will make carbon-based fuels increasingly scarce and expensive. Here we show that further progress in solar- and wind-power technology along with carbon pricing to reach the Paris Climate targets could make electricity cheaper than carbon-based fuels. In combination with demand-side innovation, for instance in e-mobility and heat pumps, this is likely to induce a fundamental transformation of energy systems towards a dominance of electricity-based end uses. In a 1.5 °C scenario with limited availability of bioenergy and carbon dioxide removal, electricity could account for 66% of final energy by mid-century, three times the current levels and substantially higher than in previous climate policy scenarios assessed by the Intergovernmental Panel on Climate Change. The lower production of bioenergy in our high-electrification scenarios markedly reduces energy-related land and water requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key characteristics of renewables-based electrification and conventional scenarios.
Fig. 2: Evolution of energy prices at the secondary energy level.
Fig. 3: Energy supply system developments in 1.5C-Elec scenario.
Fig. 4: Final energy demand and energy services in electrification scenarios.
Fig. 5: Economic and environmental implications.

Similar content being viewed by others

Data availability

The specific model runs and scenario data for this study are archived at Zenodo under https://doi.org/10.5281/zenodo.5546598 under a CC-BY-4.0 license.

Code availability

The REMIND code is available under the GNU Affero General Public License, version 3 (AGPLv3) via GitHub (https://github.com/remindmodel/remind, last access: 30 June 2021). The technical model documentation is available under https://rse.pik-potsdam.de/doc/remind/2.1.3/ (last access: 1 December 2020). The source code and input data of MAgPIE v.4.3.1 (https://github.com/magpiemodel/magpie) are openly available at https://doi.org/10.5281/zenodo.4231467. The technical model documentation is available at https://rse.pik-potsdam.de/doc/magpie/4.3.1/.

Change history

References

  1. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  2. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  3. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there – energy technology transformation pathways in the EMF27 scenarios. Climatic Change 123, 369–382 (2014).

    Article  Google Scholar 

  4. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  5. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Article  Google Scholar 

  6. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

  7. Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

    Article  Google Scholar 

  8. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019).

    Article  Google Scholar 

  9. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    Article  Google Scholar 

  10. Grubler, A. Energy transitions research: insights and cautionary tales. Energy Policy 50, 8–16 (2012).

    Article  Google Scholar 

  11. Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    Article  Google Scholar 

  12. Renewable Power Generation Costs in 2019 (IRENA, 2020).

  13. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  14. Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017).

    Article  Google Scholar 

  15. Trends and Developments in Electric Vehicle Markets – Global EV Outlook 2021 – Analysis (IEA, 2021).

  16. Nykvist, B., Sprei, F. & Nilsson, M. Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy 124, 144–155 (2019).

    Article  Google Scholar 

  17. Wilson, C. et al. Granular technologies to accelerate decarbonization. Science 368, 36–39 (2020).

    Article  Google Scholar 

  18. Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article  Google Scholar 

  19. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  Google Scholar 

  20. Creutzig, F. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat. Clim. Change 2, 320–327 (2012).

    Article  Google Scholar 

  21. Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

    Article  Google Scholar 

  22. Wilson, C., Grubler, A., Gallagher, K. S. & Nemet, G. F. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Change 2, 780–788 (2012).

    Article  Google Scholar 

  23. Baumstark, L. et al. REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geosci. Model Dev. 14, 6571–6603 (2021).

    Article  Google Scholar 

  24. Levesque, A., Pietzcker, R. C., Baumstark, L. & Luderer, G. Deep decarbonisation of buildings energy services through demand and supply transformations in a 1.5 °C scenario. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abdf07 (2021).

  25. Rottoli, M. et al. Coupling a detailed transport model to the integrated assessment model REMIND. Environ. Model Assess. https://doi.org/10.1007/s10666-021-09760-y (2021).

  26. Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nature 571, 335–342 (2019).

    Article  Google Scholar 

  27. Rogelj, J. et al. in Global Warming of 1.5°C Ch. 2 (IPCC, 2018).

  28. Dietrich, J. P. et al. MAgPIE 4 – a modular open-source framework for modeling global land systems. Geoscientific Model Dev. 12, 1299–1317 (2019).

    Article  Google Scholar 

  29. Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Román Medina, E. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility‐scale PV levelised cost of electricity. Prog. Photovolt. Res. Appl. 28, 439–453 (2020).

    Article  Google Scholar 

  30. Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy https://doi.org/10.1038/s41560-021-00810-z (2021).

  31. Roelfsema, M. et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 11, 2096 (2020).

    Article  Google Scholar 

  32. Huppmann, D. et al. IAMC 1.5°C Scenario Explorer and Data Hosted by IIASA (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018); https://doi.org/10.22022/SR15/08-2018.15429

  33. Bauer, N. et al. Shared socio-economic pathways of the energy sector – quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Article  Google Scholar 

  34. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11, 384–393 (2021).

    Article  Google Scholar 

  35. Madeddu, S. et al. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 15, 124004 (2020).

    Article  Google Scholar 

  36. Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).

    Article  Google Scholar 

  37. Balcombe, P. et al. How to decarbonise international shipping: options for fuels, technologies and policies. Energy Convers. Manag. 182, 72–88 (2019).

    Article  Google Scholar 

  38. Halim, R. A., Kirstein, L., Merk, O. & Martinez, L. M. Decarbonization pathways for international maritime transport: a model-based policy impact assessment. Sustainability 10, 2243 (2018).

    Article  Google Scholar 

  39. Levesque, A. et al. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 148, 514–527 (2018).

    Article  Google Scholar 

  40. Arvesen, A., Luderer, G., Pehl, M., Bodirsky, B. L. & Hertwich, E. G. Deriving life cycle assessment coefficients for application in integrated assessment modelling. Environ. Model. Softw. 99, 111–125 (2018).

    Article  Google Scholar 

  41. Jia, G. et al. in Climate Change and Land (eds Shukla, P. R. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2019).

  42. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  Google Scholar 

  43. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H. & Haszeldine, R. S. Last chance for carbon capture and storage. Nat. Clim. Change 3, 105–111 (2013).

    Article  Google Scholar 

  44. Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article  Google Scholar 

  45. Global Status Report of CCS (Global CCS Institute, 2020); https://www.globalccsinstitute.com/resources/global-status-report/

  46. Fasihi, M., Bogdanov, D. & Breyer, C. Techno-economic assessment of power-to-liquids (PtL) fuels production and global trading based on hybrid PV-wind power plants. Energy Procedia 99, 243–268 (2016).

    Article  Google Scholar 

  47. Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).

    Article  Google Scholar 

  48. Loulou, R. & Labriet, M. ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput. Manag. Sci. 5, 7–40 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  49. Edenhofer, O., Lessmann, K. & Bauer, N. Mitigation strategies and costs of climate protection: the effects of ETC in the hybrid model MIND. Energy J. 27, 207–222 (2006).

    Google Scholar 

  50. Bauer, N., Edenhofer, O. & Kypreos, S. Linking energy system and macroeconomic growth models. Comput. Manag. Sci. 5, 95–117 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  51. Ueckerdt, F. et al. Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model. Energy Econ. 64, 665–684 (2017).

    Article  Google Scholar 

  52. Nordhaus, W. D. & Yang, Z. A regional dynamic general-equilibrium model of alternative climate-change strategies. Am. Econ. Rev. 86, 741–765 (1996).

    Google Scholar 

  53. Manne, A., Mendelsohn, R. & Richels, R. A model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23, 17–34 (1995).

    Article  Google Scholar 

  54. Leimbach, M., Schultes, A., Baumstark, L., Giannousakis, A. & Luderer, G. Solution algorithms for regional interactions in large-scale integrated assessment models of climate change. Ann. Oper. Res. 255, 29–45 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  55. Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy technologies: are scenarios consistent with historical evidence? Climatic Change 118, 381–395 (2013).

    Article  Google Scholar 

  56. Bauer, N. et al. Assessing global fossil fuel availability in a scenario framework. Energy 111, 580–592 (2016).

    Article  Google Scholar 

  57. Pietzcker, R. C., Stetter, D., Manger, S. & Luderer, G. Using the sun to decarbonize the power sector: the economic potential of photovoltaics and concentrating solar power. Appl. Energy 135, 704–720 (2014).

    Article  Google Scholar 

  58. Eurek, K. et al. An improved global wind resource estimate for integrated assessment models. Energy Econ. 64, 552–567 (2017).

    Article  Google Scholar 

  59. Scholz, Y., Gils, H. C. & Pietzcker, R. C. Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares. Energy Econ. 64, 568–582 (2017).

    Article  Google Scholar 

  60. Brown, T., Schlachtberger, D., Kies, A., Schramm, S. & Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 160, 720–739 (2018).

    Article  Google Scholar 

  61. Schill, W.-P. Electricity storage and the renewable energy transition. Joule 4, 2059–2064 (2020).

    Article  Google Scholar 

  62. Sullivan, P., Krey, V. & Riahi, K. Impacts of considering electric sector variability and reliability in the MESSAGE model. Energy Strategy Rev. 1, 157–163 (2013).

    Article  Google Scholar 

  63. Pauliuk, S., Wang, T. & Müller, D. B. Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour. Conserv. Recycl. 71, 22–30 (2013).

    Article  Google Scholar 

  64. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  Google Scholar 

  65. Harmsen, J. H. M. et al. Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environ. Sci. Policy 99, 136–149 (2019).

    Article  Google Scholar 

  66. van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article  Google Scholar 

  67. Amann, M. (ed.) The GAINS Integrated Assessment Model (EC4MACS, 2012).

  68. Meinshausen, M., Wigley, T. M. L. & Raper, S. C. B. Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – part 2: applications. Atmos. Chem. Phys. 11, 1457–1471 (2011).

    Article  Google Scholar 

  69. Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).

    Google Scholar 

  70. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  71. Müller, C. & Robertson, R. D. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).

    Article  Google Scholar 

  72. Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A. & Müller, C. Forecasting technological change in agriculture—an endogenous implementation in a global land use model. Technol. Forecast. Soc. Change 81, 236–249 (2014).

    Article  Google Scholar 

  73. Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

    Article  Google Scholar 

  74. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

  75. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  76. Dirnacher, A., Mutel, C. L., Terlouw, T. & Sacchi, R. Coupling integrated assessment models and ecoinvent for prospective environmental impact assessment. GitHub https://github.com/romainsacchi/premise/blob/master/docs/introduction.rst (accessed 1 November 2021).

  77. Life Cycle Inventory Database v.3.7 (Ecoinvent, accessed 1 November 2021); https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-3-7/

  78. Goedkoop, M. et al. ReCiPe 2008 (version 1.08). Report I: characterisation (RIVM, Bilthoven, Netherlands, 2013); https://www.rivm.nl/documenten/a-lcia-method-which-comprises-harmonised-category-indicators-at-midpoint-and-endpoint

  79. Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Article  Google Scholar 

  80. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the German Federal Ministry of Education and Research under grant agreements no. 03SFK5A (Ariadne; G.L., F.U., M.P., R.P., M.R., F.S., A.D., A.L., R.R.) and no. 01LA1809A (DIPOL; L.M., N.B., J.S.) and from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 821124 (NAVIGATE; S.M., E.K.) and no. 821471 (ENGAGE; C.B.). We thank D. Soergel for editing and feedback as well as P. Agrawal and F. Benke for support in data analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.L. designed the research together with F.U., R.P. and E.K.; G.L., S.M., L.M., F.U., M.P., R.P., M.R., F.S., N.B., L.B., C.B., A.D., A.L., A.P., R.R., J.S. and E.K. contributed to developing the energy–economy modelling. A.P., F.H. and L.M. contributed the land-use modelling. S.M., L.M., M.P. and M.R. performed scenario modelling. G.L., M.P. and F.S. performed data analysis and created the figures. G.L. wrote the paper with input and feedback from all authors.

Corresponding author

Correspondence to Gunnar Luderer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Stefan Vögele, Matthew Binsted and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sectoral electrification shares in 2050.

Electrification shares in the transport, buildings and industry sectors in 1.5C-Elec and WB2C-Elec compared to overall electrification and electrification in corresponding IPCC SR15 scenarios.

Extended Data Fig. 2 Fossil carbon intensity of electricity and non-electric fuels (incl. hydrogen).

Fossil carbon intensity excludes negative emissions from BECCS. Thick solid and dashed lines indicate scenarios from this study, thin lines and shading corresponding SR15 scenarios. In all scenarios, the fossil carbon intensity of electricity declines much faster than the fossil carbon intensity of non-electric fuels.

Extended Data Fig. 3 Gross residual fossil emissions and carbon dioxide removal.

Sectoral residual fossil CO2 (that is, not accounting for negative emissions from BECCS) emissions from the electricity supply, non-electric supply, transport, buildings and industry sectors (positive emissions). Carbon dioxide removals from BECCS (bioenergy with CCS) and DACCS (direct air carbon capture and storage) are displayed as negative emissions. Emissions from land use, land use change and forestry (LULUCF) are currently net positive but turn net negative in some periods and scenarios.

Extended Data Fig. 4 Sankey diagram of energy system flows in 2050 in 1.5C-Elec scenario.

Energy flows are given in units of EJ per year and describe secondary energy generation by primary energy input (left to middle), and final energy provision by energy carrier (middle to right).

Extended Data Fig. 5 Regional Energy Systems in 2050.

Shares of (a) sectors and energy carriers in final demand, (b) technologies in electricity generation, (c) primary energy supply across model regions.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figures 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luderer, G., Madeddu, S., Merfort, L. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat Energy 7, 32–42 (2022). https://doi.org/10.1038/s41560-021-00937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00937-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing