Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis

Abstract

The oxygen evolution reaction (OER) is an essential anode reaction for the generation of fuels through water splitting or CO2 electroreduction. Mixed metal oxides containing Co, Fe or Ni have proved to be the most promising OER electrocatalysts in alkaline media. However, the active sites and reaction mechanisms of these catalysts are difficult to study due to their heterogeneous nature. Here we describe a general synthesis of Co-, Fe- and Ni-containing double-atom catalysts from their single-atom precursors via in situ electrochemical transformation. Characterization reveals molecule-like bimetallic active sites for these supported catalysts. For each catalyst, we propose a catalytic cycle; all exhibit bimetallic cooperation and follow a similar O–O bond-forming step. However, the mechanisms diverge in the site and source of OH for O–O bond formation, as well as the order of proton and electron transfer. Our work demonstrates double-atom catalysts as an attractive platform for fundamental studies of heterogeneous OER electrocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical OER performance of double-atom catalysts and single-atom precatalysts.
Fig. 2: Operando XAS study of Ni–Fe–N–C.
Fig. 3: Structural evolution and change of the oxidation state of double atoms.
Fig. 4: Operando HERFD–XAS experiments of Ni–Fe–N–C.
Fig. 5: Potential dependent TOFs of different catalysts.
Fig. 6: Preferred proposed reaction mechanisms of OER for double-atom catalysts.

Similar content being viewed by others

Data availability

We declare that all data supporting the findings of this study are available in the paper and Supplementary Information files. Source data are provided with this paper.

References

  1. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  Google Scholar 

  2. Suen, N. T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    Article  Google Scholar 

  3. Song, F. et al. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018).

    Article  Google Scholar 

  4. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem. 2, 724–761 (2010).

    Article  Google Scholar 

  5. Hunter, B. M., Gray, H. B. & Muller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016).

    Article  Google Scholar 

  6. Han, L., Dong, S. & Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016).

    Article  Google Scholar 

  7. Hu, C., Zhang, L. & Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12, 2620–2645 (2019).

    Article  Google Scholar 

  8. Zhu, C., Fu, S., Shi, Q., Du, D. & Lin, Y. Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017).

    Article  Google Scholar 

  9. Sultan, S. et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 9, 1900624 (2019).

    Article  Google Scholar 

  10. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  Google Scholar 

  11. Bai, L., Hsu, C. S., Alexander, D. T. L., Chen, H. M. & Hu, X. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190–14199 (2019).

    Article  Google Scholar 

  12. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  Google Scholar 

  13. Smith, R. D. L. et al. Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions. Energy Environ. Sci. 11, 2476–2485 (2018).

    Article  Google Scholar 

  14. Carta, D., Loche, D., Mountjoy, G., Navarra, G. & Corrias, A. NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an X-ray absorption study. J. Phy Chem. C 112, 15623–15630 (2008).

    Article  Google Scholar 

  15. Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X‐Ray Spectrom. Int. J. 37, 572–584 (2008).

    Google Scholar 

  16. Colpas, G. J. et al. X-ray spectroscopic studies of nickel complexes, with application to the structure of nickel sites in hydrogenases. Inorg. Chem. 30, 920–928 (1991).

    Article  Google Scholar 

  17. Tian, Y. et al. Speciation of nickel (II) chloride complexes in hydrothermal fluids: in situ XAS study. Chem. Geol. 334, 345–363 (2012).

    Article  Google Scholar 

  18. Sarangi, R., Cho, J., Nam, W. & Solomon, E. I. XAS and DFT investigation of mononuclear cobalt(III) peroxo complexes: electronic control of the geometric structure in CoO2 versus NiO2 systems. Inorg. Chem. 50, 614–620 (2011).

    Article  Google Scholar 

  19. Ekstig, B., Källne, E., Noreland, E. & Manne, R. Electron interaction in transition metal X-ray emission spectra. Phys. Scr. 2, 38 (1970).

    Article  Google Scholar 

  20. Calas, G. & Petiau, J. Coordination of iron in oxide glasses through high-resolution K-edge spectra: information from the pre-edge. Solid State Commun. 48, 625–629 (1983).

    Article  Google Scholar 

  21. Schmidt, H., Asztalos, A., Bok, F. & Voigt, W. New iron(III) nitrate hydrates: Fe(NO3)3·xH2O with x = 4, 5 and 6. Acta Crystallogr. C 68, i29–i33 (2012).

    Article  Google Scholar 

  22. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    Article  Google Scholar 

  23. Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    Article  Google Scholar 

  24. Bediako, D. K., Surendranath, Y. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    Article  Google Scholar 

  25. Bockris, J. O. M. Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956).

    Article  Google Scholar 

  26. Lyons, M. E. G. & Brandon, M. P. A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119–130 (2010).

    Article  Google Scholar 

  27. Bai, L., Lee, S. & Hu, X. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 3095–3103 (2021).

    Article  Google Scholar 

  28. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  Google Scholar 

  29. Fang, Y.-H. & Liu, Z.-P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal. 4, 4364–4376 (2014).

    Article  Google Scholar 

  30. Sakaushi, K. Quantum electrocatalysts: theoretical picture, electrochemical kinetic isotope effect analysis, and conjecture to understand microscopic mechanisms. Phys. Chem. Chem. Phys. 22, 11219–11243 (2020).

    Article  Google Scholar 

  31. Pasquini, C. et al. H/D isotope effects reveal factors controlling catalytic activity in co-based oxides for water oxidation. J. Am. Chem. Soc. 141, 2938–2948 (2019).

    Article  Google Scholar 

  32. Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nat. Chem. 3, 807–813 (2011).

    Article  Google Scholar 

  33. Chen, J. Y. et al. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 137, 15090–15093 (2015).

    Article  Google Scholar 

  34. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    Article  Google Scholar 

  35. Martirez, J. M. P. & Carter, E. A. Unraveling oxygen evolution on iron-doped beta-nickel oxyhydroxide: the key role of highly active molecular-like sites. J. Am. Chem. Soc. 141, 693–705 (2019).

    Article  Google Scholar 

  36. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  Google Scholar 

  37. Hung, S. F. et al. Identification of stabilizing high-valent active sites by operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 140, 17263–17270 (2018).

    Article  Google Scholar 

  38. Ullman, A. M., Brodsky, C. N., Li, N., Zheng, S. L. & Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138, 4229–4236 (2016).

    Article  Google Scholar 

  39. Ishizuka, T. et al. Homogeneous photocatalytic water oxidation with a dinuclear Co(III)-pyridylmethylamine complex. Inorg. Chem. 55, 1154–1164 (2016).

    Article  Google Scholar 

  40. Wang, H. Y. et al. In situ spectroscopic identification of mu-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 7, 4847–4853 (2016).

    Article  Google Scholar 

  41. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 3, 1159–1165 (2011).

    Article  Google Scholar 

  42. Risch, M. et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 8, 661–674 (2015).

    Article  Google Scholar 

  43. Smith, R. D. L. et al. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat. Commun. 8, 2022 (2017).

    Article  Google Scholar 

  44. Bajdich, M., Garcia-Mota, M., Vojvodic, A., Norskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  Google Scholar 

  45. Chen, S., Duan, J., Jaroniec, M. & Qiao, S. Z. Three‐dimensional N‐doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).

    Article  Google Scholar 

  46. Lee, S., Banjac, K., Lingenfelder, M. & Hu, X. Oxygen isotope labelling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58, 10295–10299 (2019).

    Article  Google Scholar 

  47. Ahn, H. S. & Bard, A. J. Surface interrogation scanning electrochemical microscopy of Ni(1-x)Fe(x)OOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the ‘fast’ iron sites. J. Am. Chem. Soc. 138, 313–318 (2016).

    Article  Google Scholar 

  48. Garrido-Barros, P., Gimbert-Surinach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  Google Scholar 

  49. Liu, F. et al. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 47, 1727–1752 (2008).

    Article  Google Scholar 

  50. Mavros, M. G. et al. What can density functional theory tell us about artificial catalytic water splitting? Inorg. Chem. 53, 6386–6397 (2014).

    Article  Google Scholar 

  51. Miyazato, I., Takahashi, L. & Takahashi, K. Automatic oxidation threshold recognition of XAFS data using supervised machine learning. Mol. Syst. Des. Eng. 4, 1014–1018 (2019).

    Article  Google Scholar 

  52. Iwasawa, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces Vol. 2 (World Scientific, 1996).

  53. Filipponi, A. Statistical errors in X-ray absorption fine-structure data analysis. J. Phys. Condens. Matter 7, 9343 (1995).

    Article  Google Scholar 

  54. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis (McGraw-Hill, 2003).

    Google Scholar 

  55. Stern, E. A. Number of relevant independent points in X-ray-absorption fine-structure spectra. Phys. Rev. B 48, 9825 (1993).

    Article  Google Scholar 

  56. Charnock, J. Biological applications of EXAFS spectroscopy. Radiat. Phys. Chem. 45, 385–391 (1995).

    Article  Google Scholar 

  57. Brillouin, L. Science and Information Theory (Courier Corporation, 2013).

  58. Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Research Council (grant no. 681292) and the Ministry of Science and Technology, Taiwan (contract no. MOST 107-2628-M-002-015-RSP). We thank the following individuals from EPFL for experimental assistance: W. Ni (X-ray diffraction and Raman spectra), J. Gu (electrochemical setup for O2 Faradaic efficiency measurements), W. Lan and J. Luterbacher (N2 adsorption), P. Mettraux (XPS) and N. Gasilova (ICP–AES). Y.-F. Liao (NSRRC) is acknowledged for help with operando XAS. S. Sun (EPFL) is acknowledged for the help with processing some figures.

Author information

Authors and Affiliations

Authors

Contributions

L.B. performed the synthesis, most of the characterization, electrochemical tests and electrokinetic analysis. C.-S.H. performed the operando X-ray absorption experiments. D.T.L.A. and L.B. performed the spherical aberration-corrected HAADF–STEM measurements. All authors analysed the data. L.C.B. and X.H. wrote the paper, with inputs from other authors. H.M.C. and X.H directed the research.

Corresponding authors

Correspondence to Hao Ming Chen or Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Marcel Risch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–80, Notes 1–4 and Tables 1–16.

Supplementary Data 1

Statistic source data for figures and tables in the Supplementary Information.

Source data

Source Data Fig. 1

Source data for Fig. 1a,b.

Source Data Fig. 2

Source data for Fig. 2a,d.

Source Data Fig. 3

Source data for Fig. 3c–f.

Source Data Fig. 4

Source data for Fig. 4a–e.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Hsu, CS., Alexander, D.T.L. et al. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat Energy 6, 1054–1066 (2021). https://doi.org/10.1038/s41560-021-00925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00925-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing