Established climate mitigation scenarios assume continued economic growth in all countries, and reconcile this with the Paris targets by betting on speculative technological change. Post-growth approaches may make it easier to achieve rapid mitigation while improving social outcomes, and should be explored by climate modellers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Perceived feasibility and potential barriers of a net-zero system transition among Japanese experts
Communications Earth & Environment Open Access 23 November 2023
-
Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions
Nature Communications Open Access 10 October 2023
-
Emission pathways and mitigation options for achieving consumption-based climate targets in Sweden
Communications Earth & Environment Open Access 28 September 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Leimbach, M., Kriegler, E., Roming, N. & Schwanitz, J. Global Environ. Chang. 42, 215–225 (2017).
Banerjee, R. et al. Global Energy Assessment - Toward a Sustainable Future: Summary for Policymakers (Cambridge University Press, 2012).
Hickel, J. & Kallis, G. New Polit. Econ. 25, 469–486 (2020).
Jackson, T. Prosperity without growth: Foundations for the economy of tomorrow (Routledge, 2017).
Steinberger, J. K., Lamb, W. F. & Sakai, M. Environ. Res. Lett. 15, 044016 (2020).
Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Global Environ. Chang. 65, 102168 (2020).
Nieto, J., Carpintero, Ó., Miguel, L. J. & de Blas, I. Energ. Policy 137, 111090 (2020).
Anderson, K., Broderick, J. F. & Stoddard, I. Clim. Policy 20, 1290–1304 (2020).
Le Quéré, C. et al. Nat. Clim. Change 9, 213–217 (2019).
Creutzig, F. et al. Glob. Change Biol. Bioenergy 13, 510–515 (2021).
Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).
De Coninck, H. & Benson, S. M. Annu. Rev. Environ. Resour. 39, 243–270 (2014).
Negative emission technologies: what role in meeting Paris agreement targets? EASAC Policy Report 35 (European Academies Science Advisory Council, 2018).
Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. Clim. Policy 18, 690–714 (2017).
van Vuuren, D. P., Hof, A. F., van Sluisveld, M. A. E. & Riahi, K. Nat. Energy 2, 902–904 (2017).
Grubler, A. et al. Nat. Energy 3, 515–527 (2018).
Brockway, P. E., Sorrell, S. R., Semieniuk, G., Heun, M. K. & Court, V. Renew. Sustain. Energy Rev. 141, 110781 (2021).
Haberl, H. et al. Environ. Res. Lett. 15, 065003 (2020).
Ward, J. D. et al. Plos One 11, e0164733 (2016).
Keen, S., Ayres, R. U. & Standish, R. Ecol. Econ. 157, 40–46 (2019).
Heun, M. K. & Brockway, P. E. Appl. Energ. 251, 112697 (2019).
Fix, B. Biophys. Econ. Resour. Qual. 4, 6 (2019).
Lange, S., Pohl, J. & Santarius, T. Ecol. Econ. 176, 106760 (2020).
Kallis, G. et al. Annu. Rev. Environ. Resour. 43, 291–316 (2018).
Kuhnhenn, K., da Costa, L. F. C., Mahnke, E., Schneider, L. & Lange, S. A societal transformation scenario for staying below 1.5 °C (Heinrich-Böll-Stiftung, 2020).
Steckel, J. C., Brecha, R. J., Jakob, M., Strefler, J. & Luderer, G. Ecol. Econ. 90, 53–67 (2013).
Semieniuk, G., Taylor, L., Rezai, A. & Foley, D. K. Nat. Clim. Change 11, 313–318 (2021).
Pye, S. et al. Clim. Policy 21, 222–231 (2021).
O’Neill, B. C. et al. Glob. Environ. Chang. 42, 169–180 (2017).
D’Alessandro, S., Luzzati, T. & Morroni, M. J. Clean. Prod. 18, 291–298 (2010).
D’Alessandro, S., Cieplinski, A., Distefano, T. & Dittmer, K. Nat. Sustain. 3, 329–335 (2020).
Haberl, H. et al. Nat. Sustain. 2, 173–184 (2019).
Acknowledgements
G.K. and A.S. acknowledge the financial support of the Spanish Ministry of Science, Innovation and Universities, through the ‘Maria de Maeztu’ programme for Units of Excellence (CEX2019-000940-M). P.B.’s time was funded by the UK Research and Innovation Council, supported under EPSRC Fellowship award EP/R024254/1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Hickel, J., Brockway, P., Kallis, G. et al. Urgent need for post-growth climate mitigation scenarios. Nat Energy 6, 766–768 (2021). https://doi.org/10.1038/s41560-021-00884-9
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41560-021-00884-9
This article is cited by
-
Compensation for atmospheric appropriation
Nature Sustainability (2023)
-
The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand
Nature Communications (2023)
-
Perceived feasibility and potential barriers of a net-zero system transition among Japanese experts
Communications Earth & Environment (2023)
-
Emission pathways and mitigation options for achieving consumption-based climate targets in Sweden
Communications Earth & Environment (2023)
-
Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions
Nature Communications (2023)