Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons


Membrane-based approaches can offer energy-efficient and cost-effective methods for various separation processes. Practical membranes must have high permselectivity at industrially relevant high pressures and under aggressive conditions, and be manufacturable in a scalable and robust fashion. We report a versatile electrochemical directed-assembly strategy to fabricate polycrystalline metal–organic framework membranes for separation of hydrocarbons. We fabricate a series of face-centred cubic metal–organic framework membranes based on 12-connected rare-earth or zirconium hexanuclear clusters with distinct ligands. In particular, the resultant fumarate-based membranes containing contracted triangular apertures as sole entrances to the pore system enable molecular-sieving separation of propylene/propane and butane/isobutane mixtures. Prominently, increasing the feed pressure to the industrially practical value of 7 atm promoted a desired enhancement in both the total flux and separation selectivity. Process design analysis demonstrates that, for propylene/propane separation, the deployment of such face-centred cubic Zr-fumarate-based metal–organic framework membranes in a hybrid membrane–distillation system offers the potential to decrease the energy input by nearly 90% relative to a conventional single distillation process.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Isoreticulation of fcu-MOFs and designed synthesis of fcu-MOF membranes.
Fig. 2: SEM images and XRD patterns of the explored fcu-MOF membranes.
Fig. 3: Gas separation performance of fcu-MOF membranes.
Fig. 4: C3H6/C3H8 separation performance of Zr-fum-fcu-MOF membranes at practical conditions.
Fig. 5: Summary of techno-economic analysis comparison of distillation and hybrid membrane–distillation systems.

Data availability

The datasets analysed and generated during the current study are included in the paper and its Supplementary Information (Source data) are provided with this paper.


  1. 1.

    Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  2. 2.

    Cadiau, A., Adil, K., Bhatt, P., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  Google Scholar 

  3. 3.

    Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).

    Article  Google Scholar 

  4. 4.

    Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  Google Scholar 

  5. 5.

    Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    Article  Google Scholar 

  6. 6.

    Gokhale, V., Hurowitz, S. & Riggs, J. B. A comparison of advanced distillation control techniques for a propylene/propane splitter. Ind. Eng. Chem. Res. 34, 4413–4419 (1995).

    Article  Google Scholar 

  7. 7.

    Klemola, K. T. & Ilme, J. K. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator. Ind. Eng. Chem. Res. 35, 4579–4586 (1996).

    Article  Google Scholar 

  8. 8.

    Ma, X. et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 361, 1008–1011 (2018).

    Article  Google Scholar 

  9. 9.

    Joseph, J. Purification of hydrocarbon feedstocks. US patent 3,816,975 (1974).

  10. 10.

    Belmabkhout, Y. et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat. Energy 3, 1059–1066 (2018).

    Article  Google Scholar 

  11. 11.

    Freeman, B. D. & Pinnau, I. Gas and liquid separations using membranes: an overview. ACS Symp. Ser.: Adv. Mater. Membr. Sep. 876, 1–23 (2004).

    Article  Google Scholar 

  12. 12.

    Liu, Y. et al. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation. Adv. Mater. 31, 1807513 (2019).

    Article  Google Scholar 

  13. 13.

    Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  Google Scholar 

  14. 14.

    Caro, J. Are MOF membranes better in gas separation than those made of zeolites? Curr. Opin. Chem. Eng. 1, 77–83 (2011).

    Article  Google Scholar 

  15. 15.

    Shekhah, O., Chernikova, V., Belmabkhout, Y. & Eddaoudi, M. Metal–organic framework membranes: from fabrication to gas separation. Crystals 8, 412 (2018).

    Article  Google Scholar 

  16. 16.

    Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 142, 9582–9586 (2020).

    Google Scholar 

  17. 17.

    Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).

    Article  Google Scholar 

  18. 18.

    Dutta, A. et al. Influence of hydrogen sulfide exposure on the transport and structural properties of the metal–organic framework ZIF-8. J. Phys. Chem. C 122, 7278–7287 (2018).

    Article  Google Scholar 

  19. 19.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  Google Scholar 

  20. 20.

    Kolokolov, D. I., Stepanov, A. G. & Jobic, H. Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by ­2H NMR: saloon doors for the guests. J. Phys. Chem. C 119, 27512–27520 (2015).

    Article  Google Scholar 

  21. 21.

    Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347–351 (2017).

    Article  Google Scholar 

  22. 22.

    Yassine, O. et al. H2S sensors: fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew. Chem. Int. Ed. 55, 15879–15883 (2016).

    Article  Google Scholar 

  23. 23.

    Furukawa, H. et al. Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    Article  Google Scholar 

  24. 24.

    Chen, Z. et al. Enhanced separation of butane isomers via defect control in a fumarate/zirconium-based metal organic framework. Langmuir 34, 14546–14551 (2018).

    Article  Google Scholar 

  25. 25.

    Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    Article  Google Scholar 

  26. 26.

    Ghalei, B. et al. Rational tuning of zirconium metal–organic framework membranes for hydrogen purification. Angew. Chem. Int. Ed. 58, 19034–19040 (2019).

    Article  Google Scholar 

  27. 27.

    Ghalei, B. et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy 2, 17086 (2017).

    Article  Google Scholar 

  28. 28.

    Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  Google Scholar 

  29. 29.

    Yu, J., Pan, Y., Wang, C. & Lai, Z. ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chem. Eng. Sci. 141, 119–124 (2016).

    Article  Google Scholar 

  30. 30.

    Sheng, L. et al. Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating. Chem. Commun. 53, 7760–7763 (2017).

    Article  Google Scholar 

  31. 31.

    Guillerm, V. et al. Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks. Nat. Chem. 6, 673 (2014).

    Article  Google Scholar 

  32. 32.

    Hou, Q. et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Ed. 58, 327–331 (2019).

    Article  Google Scholar 

  33. 33.

    Diestel, L. et al. MOF based MMMs with enhanced selectivity due to hindered linker distortion. J. Membr. Sci. 492, 181–186 (2015).

    Article  Google Scholar 

  34. 34.

    Knebel, A. et al. Solution processable metal–organic frameworks for mixed matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    Article  Google Scholar 

  35. 35.

    Friebe, S., Geppert, B., Steinbach, F. & Caro, J. Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Appl. Mater. Interfaces 9, 12878–12885 (2017).

    Article  Google Scholar 

  36. 36.

    Friebe, S., Mundstock, A., Volgmann, K. & Caro, J. On the better understanding of the surprisingly high performance of metal−organic framework-based mixed-matrix membranes using the example of UiO-66 and Matrimid. ACS Appl. Mater. Interfaces 9, 41553–41558 (2017).

    Article  Google Scholar 

  37. 37.

    Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 369, 284–289 (2011).

    Article  Google Scholar 

  38. 38.

    Olujic, Z., Fakhri, F., De Rijke, A., De Graauw, J. & Jansens, P. J. Internal heat integration-the key to an energy-conserving distillation column. J. Chem. Technol. Biotechnol. 78, 241–248 (2003).

    Article  Google Scholar 

  39. 39.

    Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).

    Article  Google Scholar 

  40. 40.

    Lee, U., Kim, J., Chae, I. S. & Han, C. Techno-economic feasibility study of membrane based propane/propylene separation process. Chem. Eng. Process. 119, 62–72 (2017).

    Article  Google Scholar 

  41. 41.

    Umo, A. M. & Bassey, E. N. Simulation and performance analysis of propylene–propane splitter in petroleum refinery case study. Int. J. Chem. Eng. 8, 1 (2017).

    Google Scholar 

  42. 42.

    Olujić, Ž., Sun, L., De Rijke, A. & Jansens, P. Conceptual design of an internally heat integrated propylene–propane splitter. Energy 31, 3083–3096 (2006).

    Article  Google Scholar 

  43. 43.

    Alcántara-Avila, J. R., Gómez-Castro, F. I., Segovia-Hernández, J. G., Sotowa, K.-I. & Horikawa, T. Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation. Chem. Eng. Process. 82, 112–122 (2014).

    Article  Google Scholar 

  44. 44.

    TI, F. First-principles inference model improves deisobutanizer column control. Hydrocarb. Process. 1, 43 (2003).

    Google Scholar 

  45. 45.

    Hommeltoft, S. I. Isobutane alkylation: recent developments and future perspectives. Appl. Catal. A 221, 421–428 (2001).

    Article  Google Scholar 

  46. 46.

    Mittal, N. et al. A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane–distillation processes for butane isomer separations. J. Membr. Sci. 520, 434–449 (2016).

    Article  Google Scholar 

Download references


The authors thank King Abdullah University of Science and Technology (KAUST) for financial support.

Author information




M.E. conceived, designed and guided the whole project. S.Z. fabricated the polycrystalline membranes and performed the permeation tests. S.Z. and J.J. proposed the membrane synthesis routes. S.Z. calculated the two guidelines for membrane preparations. O.S., J.C.-J. and P.M.B. assisted with instrument development. S.Z., O.S., J.J. and M.E. discussed the presented findings. A.R., P.M.B. and J.G. contributed to the process simulations. S.Z., O.S. and M.E. coordinated the writing of the paper, and all authors contributed to revising the paper.

Corresponding author

Correspondence to Mohamed Eddaoudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Simon Smart, Michael Tsapatsis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Materials and instruments information. Supplementary Figs. 1–48, Tables 1–11, Notes 1–3 and Refs. 1–16.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Shekhah, O., Jia, J. et al. Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat Energy 6, 882–891 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing