Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries

A Publisher Correction to this article was published on 31 March 2021

This article has been updated

Abstract

The need for higher energy-density rechargeable batteries has generated interest in alkali metal electrodes paired with solid electrolytes. However, metal penetration and electrolyte fracture at low current densities have emerged as fundamental barriers. Here we show that for pure metals in the Li–Na–K system, the critical current densities scale inversely to mechanical deformation resistance. Furthermore, we demonstrate two electrode architectures in which the presence of a liquid phase enables high current densities while it preserves the shape retention and packaging advantages of solid electrodes. First, biphasic Na–K alloys show K+ critical current densities (with the K-β″-Al2O3 electrolyte) that exceed 15 mA cm‒2. Second, introducing a wetting interfacial film of Na–K liquid between Li metal and Li6.75La3Zr1.75Ta0.25O12 solid electrolyte doubles the critical current density and permits cycling at areal capacities that exceed 3.5 mAh cm‒2. These design approaches hold promise for overcoming electrochemomechanical stability issues that have heretofore limited the performance of solid-state metal batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the electrochemical cells studied.
Fig. 2: Surface finish and microstructure of solid electrolytes studied.
Fig. 3: CCD for the metal penetration of solid electrolytes.
Fig. 4: Surfaces of positive and negative current collectors and solid electrolyte after cycling of the symmetric metal–solid electrolyte cells to short-circuit failure.
Fig. 5: CCD versus areal capacity for single-phase solid metals and semi-solid alloy mixtures.
Fig. 6: CCD versus electrochemical cell type and alkali metal yield stress.
Fig. 7: Compositional design for semi-solid alkali metal electrodes.

Similar content being viewed by others

Data availability

All the relevant data are included in the paper and its Supplementary Information. Source data are provided with this paper.

Change history

References

  1. Howell, D., Cunningham, B. Duong, T. & Faguy, P. Overview of DOE Vehicle Technologies Office Advanced Battery R&D Program (Vehicle Technologies Office, 2016).

  2. Harlow, J. E. et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J. Electrochem. Soc. 166, A3031–A3044 (2019).

    Article  Google Scholar 

  3. Bills, A., Sripad, S., Fredericks, W. L., Singh, M. & Viswanathan, V. Performance metrics required of next-generation batteries to electrify commercial aircraft. ACS Energy Lett. 5, 663–668 (2020).

    Article  Google Scholar 

  4. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  Google Scholar 

  5. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  Google Scholar 

  6. Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    Article  Google Scholar 

  7. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  Google Scholar 

  8. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

    Article  Google Scholar 

  9. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  10. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  Google Scholar 

  11. Liu, D. et al. Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mater. Sci. Eng. B 213, 169–176 (2016).

    Article  Google Scholar 

  12. McGrogan, F. et al. Compliant yet brittle mechanical behavior of Li2S–P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater. 7, 1602011 (2017).

    Article  Google Scholar 

  13. Wolfenstine, J. et al. A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors. Mater. Lett. 96, 117–120 (2013).

    Article  Google Scholar 

  14. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  15. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  16. Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).

    Article  Google Scholar 

  17. Aguesse, F. et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017).

    Article  Google Scholar 

  18. Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016).

    Article  Google Scholar 

  19. Ren, Y. Y., Shen, Y., Lin, Y. H. & Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 57, 27–30 (2015).

    Article  Google Scholar 

  20. Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).

    Article  Google Scholar 

  21. Taylor, N. J. et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J. Power Sources 396, 314–318 (2018).

    Article  Google Scholar 

  22. Jolly, D. S. et al. Sodium/Na β″ alumina interface: effect of pressure on voids. ACS Appl. Mater. Interfaces 12, 678–685 (2020).

    Article  Google Scholar 

  23. Bay, M.-C. et al. Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries. Adv. Energy Mater. 10, 1902899 (2019).

    Article  Google Scholar 

  24. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  Google Scholar 

  25. Griffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. 221A, 163–198 (1920).

    MATH  Google Scholar 

  26. Inglis, C. E. Stresses in a plate due to the presence of cracks and sharp notches. Trans. Roy. Inst. Nav. Archit. 55, 219–241 (1913).

    Google Scholar 

  27. Orowan, E. Fracture and strength of solids. Rep. Prog. Phys. 12, 185–232 (1949).

    Article  Google Scholar 

  28. Virkar, A. V. & Viswanathan, L. Sodium penetration in rapid ion conductors. J. Am. Ceram. Soc. 62, 528–529 (1979).

    Article  Google Scholar 

  29. Virkar, A. V. On some aspects of breakdown of β″-alumina solid electrolyte. J. Mater. Sci. 16, 1142–1150 (1981).

    Article  Google Scholar 

  30. Fincher, C. D., Ojeda, D., Zhang, Y., Pharr, G. M. & Pharr, M. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater. 186, 215–222 (2019).

    Article  Google Scholar 

  31. LePage, W. S. et al. Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J. Electrochem. Soc. 166, A89–A97 (2019).

    Article  Google Scholar 

  32. Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    Article  Google Scholar 

  33. Vaks, V. G., Kravchuk, S. P., Zarochentsev, E. V. & Safronov, V. P. Temperature dependence of the elastic constants in alkali metals. J. Phys. F 8, 725–742 (1978).

    Article  Google Scholar 

  34. Hull, D. & Rosenberg, H. M. The deformation of lithium, sodium and potassium at low temperatures: tensile and resistivity experiments. Philos. Mag. 4, 303–315 (1959).

    Article  Google Scholar 

  35. Andrade, E. Nd-C. & Dobbs, E. R. The viscosities of liquid lithium, rubidium and caesium. Proc. R. Soc. Lond. A 211, 12–30 (1952).

    Article  Google Scholar 

  36. Grosse, A. V. Viscosities of liquid sodium and potassium, from their melting points to their critical points. Science 147, 1438–1411 (1965).

    Article  Google Scholar 

  37. Fincher, C. D., Zhang, Y., Pharr, G. M. & Pharr, M. Elastic and plastic characteristics of sodium metal. ACS Appl. Energy Mater. 3, 1759–1767 (2020).

    Article  Google Scholar 

  38. Tabor, D. The Hardness of Metals (Oxford Univ. Press, 2000).

  39. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A. & Evans, C. D. Thin-film lithium and lithium-ion batteries. Solid State Ion. 135, 33–45 (2000).

    Article  Google Scholar 

  40. Baclig, A. C. et al. High-voltage, room-temperature liquid metal flow battery enabled by Na–K|K–β″-alumina stability. Joule 2, 1287–1296 (2018).

    Article  Google Scholar 

  41. Liu, C., Shamie, J. S., Shaw, L. L. & Sprenkle, V. L. An ambient temperature molten sodium–vanadium battery with aqueous flowing catholyte. ACS Appl. Mater. Interfaces 8, 1545–1552 (2015).

    Article  Google Scholar 

  42. Guo, X. et al. A self‐healing room‐temperature liquid‐metal anode for alkali‐ion batteries. Adv. Funct. Mater. 28, 1804649 (2018).

    Article  Google Scholar 

  43. Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

    Article  Google Scholar 

  44. Anstis, G. R., Chantikul, P., Lawn, B. R. & Marshall, D. B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981).

    Article  Google Scholar 

  45. Evans, A. G. & Charles, E. A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc. 59, 371–372 (1976).

    Article  Google Scholar 

  46. Kaufman, L. The lattice stability of metals—I. Titanium and zirconium. Acta Metall. 7, 575–587 (1959).

    Article  Google Scholar 

  47. Dinsdale, A. T. SGTE data for pure elements. Calphad 15, 317–425 (1991).

    Article  Google Scholar 

  48. Redlich, O. & Kister, S. T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 20, 345–348 (1948).

    Article  Google Scholar 

  49. Lukas, H., Fries, S. G. & Sundman. B. Computational Thermodynamics: the CALPHAD Method (Cambridge Univ. Press, 2007).

  50. Zhang, S. J. Thermodynamic Investigation of the Effect of Alkali Metal Impurities on the Processing of Al and Mg Alloys PhD thesis (Pennsylvania State Univ., 2006).

  51. Balluffi, R., Allen, S. M. & Carter, W. C. Kinetics of Materials (Wiley, 2005).

Download references

Acknowledgements

We acknowledge support from the US Department of Energy, Office of Basic Energy Science, through award no. DE-SC0002633 (J. Vetrano, Program Manager). This work made use of the MRL MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award no. DMR-1419807. We also acknowledge use of the MIT Nanomechanical Technology Laboratory (A. Schwartzman, Manager). We thank T. Swamy for helpful discussions, and N. Katorova and P. Morozova for assistance with alkali metal handling procedures. We acknowledge financial support from the MIT-Skoltech Next Generation Program, award no. 2016-1, for the portion of the work related to K metal. C.D.F. acknowledges the support of the National Science Foundation Graduate Research Fellowship under grant no. 1746932. M.P. acknowledges the support of the National Science Foundation under award no. DMR-1944674.

Author information

Authors and Affiliations

Authors

Contributions

Y.-M.C. and R.J.-Y.P. designed the study. R.J.-Y.P. prepared, measured and analysed the results from the electrochemical cells. C.M.E. measured the alkali metal wetting angles. C.D.F. measured the alkali metal mechanical properties. A.F.B. performed the image analysis of disassembled cells. P.G. calculated the Li–Na–K ternary phase diagram. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Yet-Ming Chiang.

Ethics declarations

Competing interests

Massachusetts Institute of Technology has filed for patents on the subject matter related to this article in which R.J.-Y.P., Y.-M.C., P.G. and V.V. are listed inventors.

Additional information

Peer review information Nature Energy thanks Qiang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–12, discussion, methods and references.

Source data

Source Data Fig. 6

Microhardness data for Li, Na and K (10 independent measurements per metal).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, R.JY., Eschler, C.M., Fincher, C.D. et al. Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat Energy 6, 314–322 (2021). https://doi.org/10.1038/s41560-021-00786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00786-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing