Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The albedo–climate penalty of hydropower reservoirs

Abstract

Hydropower emits less carbon dioxide than fossil fuels but the lower albedo of hydropower reservoirs compared to terrestrial landscapes results in a positive radiative forcing, offsetting some of the negative radiative forcing of hydroelectricity generat ion. The cumulative effect of this lower albedo has not been quantified. Here we show, by quantifying the difference in remotely sensed albedo between globally distributed hydropower reservoirs and their surrounding landscape, that 19% of all investigated hydropower plants required 40 years or more for the negative radiative forcing from the fossil fuel displacement to offset the albedo effect. The length of these break-even times depends on the specific combination of climatic and environmental constraints, power plant design characteristics and country-specific electricity carbon intensities. We conclude that future hydropower plants need to minimize the albedo penalty to make a meaningful contribution towards limiting global warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Latitudinal distribution of investigated parameters.
Fig. 2: Drivers of variability in break-even times.
Fig. 3: Latitudinal distribution of the CO2 avoidance to reservoir surface area ratio.

Data availability

The data underlying this analysis are freely available from the following sources: satellite remote sensing: https://lpdaacsvc.cr.usgs.gov/appeears/api/; global shortwave radiation at 5-km resolution (BESS_Rad): http://environment.snu.ac.kr/bess_rad/; albedo change radiative kernel (CACK v.1.0): https://portal.edirepository.org/nis/mapbrowse?packageid=edi.396.1; GRanD database (v.1.01): http://sedac.ciesin.columbia.edu/pfs/grand.html; GPPD database (v.1.1.0): http://datasets.wri.org/dataset/globalpowerplantdatabase. A complete example dataset for one selected hydropower reservoir is freely available under the following https://doi.org/10.5281/zenodo.4432576.

Code availability

The Matlab (MathWorks) and R62 scripts used to analyse data are freely available under the following https://doi.org/10.5281/zenodo.4432576.

References

  1. 1.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

    Google Scholar 

  2. 2.

    Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Google Scholar 

  3. 3.

    Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

    Google Scholar 

  4. 4.

    Hoffert, M. I. et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298, 981–987 (2002).

    Google Scholar 

  5. 5.

    Yang, W. et al. Burden on hydropower units for short-term balancing of renewable power systems. Nat. Commun. 9, 2633 (2018).

    Google Scholar 

  6. 6.

    Jacobson, M. Z. 100% Clean, Renewable Energy and Storage for Everything (Cambridge Univ. Press, 2020).

  7. 7.

    van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Google Scholar 

  8. 8.

    Turner, S. W. D., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590–591, 663–675 (2017).

    Google Scholar 

  9. 9.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2014).

    Google Scholar 

  10. 10.

    Farinotti, D., Round, V., Huss, M., Compagno, L. & Zekollari, H. Large hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).

    Google Scholar 

  11. 11.

    Wehrli, B. Climate science: renewable but not carbon-free. Nat. Geosci. 4, 585–586 (2011).

    Google Scholar 

  12. 12.

    Scherer, L. & Pfister, S. Hydropower’s biogenic carbon footprint. PLoS ONE 11, e0161947 (2016).

    Google Scholar 

  13. 13.

    Ocko, I. B. & Hamburg, S. P. Climate impacts of hydropower: enormous differences among facilities and over time. Environ. Sci. Technol. 53, 14070–14082 (2019).

    Google Scholar 

  14. 14.

    Barros, N. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4, 593–596 (2011).

    Google Scholar 

  15. 15.

    Cogley, J. G. The albedo of water as a function of latitude. Mon. Weather Rev. 107, 775–781 (1979).

    Google Scholar 

  16. 16.

    Cescatti, A. et al. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 121, 323–334 (2012).

    Google Scholar 

  17. 17.

    Bright, R. M., Bogren, W., Bernier, P. & Astrup, R. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).

    Google Scholar 

  18. 18.

    Kirschbaum, M. U. F. et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences 8, 3687–3696 (2011).

    Google Scholar 

  19. 19.

    Bright, R. M. & Kvalevåg, M. M. Technical note: evaluating a simple parameterization of radiative shortwave forcing from surface albedo change. Atmos. Chem. Phys. 13, 11169–11174 (2013).

    Google Scholar 

  20. 20.

    Bright, R. M. & O’Halloran, T. L. Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019).

    Google Scholar 

  21. 21.

    Projected Costs of Generating Electricity (International Energy Agency and Nuclear Energy Agency, 2010).

  22. 22.

    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Google Scholar 

  23. 23.

    Bonan, G. B. Forests and climate change: climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  24. 24.

    Myhre, G., Kvalevåg, M. M. & Schaaf, C. B. Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophys. Res. Lett. 32, L21410 (2005).

    Google Scholar 

  25. 25.

    Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    MathSciNet  Google Scholar 

  26. 26.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  27. 27.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Google Scholar 

  28. 28.

    Couto, T. B. A. & Olden, J. D. Global proliferation of small hydropower plants – science and policy. Front. Ecol. Environ. 16, 91–100 (2018).

    Google Scholar 

  29. 29.

    Ardizzon, G., Cavazzini, G. & Pavesi, G. A new generation of small hydro and pumped-hydro power plants: advances and future challenges. Renew. Sustain. Energy Rev. 31, 746–761 (2014).

    Google Scholar 

  30. 30.

    CO2 Emissions from Fuel Combustion (International Energy Agency, 2016).

  31. 31.

    Ang, B. W. & Su, B. Carbon emission intensity in electricity production: a global analysis. Energy Policy 94, 56–63 (2016).

    Google Scholar 

  32. 32.

    Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’ energy? Trends Ecol. Evol. 32, 922–935 (2017).

    Google Scholar 

  33. 33.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Google Scholar 

  34. 34.

    Moran, E. F., Lopez, M. C., Moore, N., Muller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Google Scholar 

  35. 35.

    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).

    Google Scholar 

  36. 36.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Google Scholar 

  37. 37.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Google Scholar 

  38. 38.

    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).

    Google Scholar 

  39. 39.

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

    Google Scholar 

  40. 40.

    Johnson, P. T. J., Olden, J. D. & Vander Zanden, M. J. Dam invaders: impoundments facilitate biological invasions into freshwaters. Front. Ecol. Environ. 6, 357–363 (2008).

    Google Scholar 

  41. 41.

    Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).

    Google Scholar 

  42. 42.

    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Google Scholar 

  43. 43.

    Richter, B. D. et al. Lost in development’s shadow: the downstream human consequences of dams. Water Alter. 3, 14–42 (2010).

    Google Scholar 

  44. 44.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  45. 45.

    Global Power Plant Database (GPPD) (World Resources Institute, 2018); https://datasets.wri.org/dataset/globalpowerplantdatabase

  46. 46.

    Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global – 500m V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/products/mcd43a1v006/

  47. 47.

    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://lpdaac.usgs.gov/products/mcd12q1v006/

  48. 48.

    NASA JPL NASA Shuttle Radar Topography Mission Global 3 arc second (NASA EOSDIS Land Processes DAAC, 2013); https://lpdaac.usgs.gov/products/srtmgl3v003/

  49. 49.

    NASA/METI/AIST/Japan Spacesystems and Japan/US ASTER Science Team. ASTER Global Digital Elevation Model V003 (NASA EOSDIS Land Processes DAAC, 2018); https://lpdaac.usgs.gov/products/astgtmv003/

  50. 50.

    Liu, J. et al. Validation of moderate resolution imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on solar zenith angle. J. Geophys. Res. Atmos. 114, D01106 (2009).

    Google Scholar 

  51. 51.

    Chen, J. M., Liu, J., Cihlar, J. & Goulden, M. L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 124, 99–119 (1999).

    Google Scholar 

  52. 52.

    Ham, J. M. in Micrometeorology in Agricultural Systems Vol. 47 (eds Hatfield, J. L. & Baker, J. M.) 533–560 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2005).

  53. 53.

    Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 204, 812–825 (2018).

    Google Scholar 

  54. 54.

    Desai, A. R., Vesala, T. & Rantakari, M. Measurements, modeling, and scaling of inland water gas exchange. Eos 96 (2015).

  55. 55.

    Bright, R. M. & O’Halloran, T. L. A Monthly Shortwave Radiative Forcing Kernel for Surface Albedo Change Using CERES Satellite Data Version 1 (Environmental Data Initiative, 2019).

  56. 56.

    Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Google Scholar 

  57. 57.

    Lehner, B. et al. Global Reservoir and Dam (GRanD) Database Technical documentation, Version 1.1 (SEDAC, 2011).

  58. 58.

    Mu, M., Tang, Q., Han, S., Liu, X. & Cui, H. Using GRanD database and surface water data to constrain area–storage curve of reservoirs. Water 12, 1242 (2020).

    Google Scholar 

  59. 59.

    Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Google Scholar 

  60. 60.

    Pianosi, F. & Wagener, T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw. 67, 1–11 (2015).

    Google Scholar 

  61. 61.

    Pianosi, F., Sarrazin, F. & Wagener, T. A Matlab toolbox for global sensitivity analysis. Environ. Model. Softw. 70, 80–85 (2015).

    Google Scholar 

  62. 62.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  63. 63.

    RStudio. Integrated Development for R (RStudio, 2019).

  64. 64.

    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, https://doi.org/10.18637/jss.v017.i01 (2006).

Download references

Acknowledgements

This work was partially funded by the Autonomous Province Bozen-Südtirol (ALCH4 project) and grants by the Austrian National Science Fund (FWF, grant numbers P31669-B22 and I03859). This publication incorporates data from the GRanD database which is a Global Water System Project (2011). We thank F. Kitz for help with statistics in R and H. Iwata and K. Scholz for providing measured albedos for Lake Suwa and Lakes Lunz and Mondsee, respectively.

Author information

Affiliations

Authors

Contributions

G.W. conceived the study. G.W., E.T. and A.H. analysed the data and wrote the manuscript together.

Corresponding author

Correspondence to Georg Wohlfahrt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–11 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wohlfahrt, G., Tomelleri, E. & Hammerle, A. The albedo–climate penalty of hydropower reservoirs. Nat Energy 6, 372–377 (2021). https://doi.org/10.1038/s41560-021-00784-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing