Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of O2 in O-redox cathodes for Li-ion batteries

Abstract

The energy density of Li-ion batteries can be improved by storing charge at high voltages through the oxidation of oxide ions in the cathode material. However, oxidation of O2− triggers irreversible structural rearrangements in the bulk and an associated loss of the high voltage plateau, which is replaced by a lower discharge voltage, and a loss of O2 accompanied by densification at the surface. Here we consider various models for oxygen redox that are proposed in the literature and then describe a single unified model involving O2− oxidation to form O2, most of which is trapped in the bulk and the remainder of which evolves from the surface. The model extends the O2 formation and evolution at the surface, which is well known and well characterized, into the electrode particle bulk as caged O2 that can be reversibly reduced and oxidized. This converged understanding enables us to propose practical strategies to avoid oxygen-redox-induced instability and provide potential routes towards more reversible, high energy density Li-ion cathodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Layered Li-rich cathodes.
Fig. 2: Previously proposed forms of oxidized O.
Fig. 3: Experimental evidence for molecular O2.
Fig. 4: Relationship between structural change and voltage hysteresis.
Fig. 5: Surface and bulk O2 formation.
Fig. 6: Strategies to develop stable O-redox materials.

Similar content being viewed by others

References

  1. Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 149, A778 (2002).

    Article  Google Scholar 

  2. Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).

    Article  Google Scholar 

  3. Johnson, C. S. et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004).

    Article  Google Scholar 

  4. Kim, J.-S. et al. Electrochemical and structural properties of xLi2M′O3·(1−x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M′ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem. Mater. 16, 1996–2006 (2004).

    Article  Google Scholar 

  5. Koga, H. et al. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J. Power Sources 236, 250–258 (2013).

    Article  Google Scholar 

  6. Oishi, M. et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J. Power Sources 276, 89–94 (2015).

    Article  Google Scholar 

  7. Saubanère, M., McCalla, E., Tarascon, J.-M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 9, 984–991 (2016).

    Article  Google Scholar 

  8. Muhammad, S. et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 21, 172–184 (2016).

    Article  Google Scholar 

  9. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  Google Scholar 

  10. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  11. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  Google Scholar 

  12. Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    Article  Google Scholar 

  13. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  Google Scholar 

  14. Luo, K. et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc. 138, 11211–11218 (2016).

    Article  Google Scholar 

  15. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  Google Scholar 

  16. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  Google Scholar 

  17. Hansen, C. J. et al. Multielectron, cation and anion redox in lithium-rich iron sulfide cathodes. J. Am. Chem. Soc. 142, 6737–6749 (2020).

    Article  Google Scholar 

  18. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006).

    Article  Google Scholar 

  19. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  Google Scholar 

  20. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  Google Scholar 

  21. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  Google Scholar 

  22. Tran, N. et al. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system. Chem. Mater. 20, 4815–4825 (2008).

    Article  Google Scholar 

  23. Weill, F., Tran, N., Martin, N., Croguennec, L. & Delmas, C. Electron diffraction study of the layered Liy(Ni0.425Mn0.425Co0.15)0.88O2 materials reintercalated after two different states of charge. Electrochem. Solid State Lett. 10, A194 (2007).

    Article  Google Scholar 

  24. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  Google Scholar 

  25. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  Google Scholar 

  26. Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    Article  Google Scholar 

  27. Gent, W. E., Abate, I. I., Yang, W., Nazar, L. F. & Chueh, W. C. Design rules for high-valent redox in intercalation electrodes. Joule 4, 1369–1397 (2020).

    Article  Google Scholar 

  28. Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    Article  Google Scholar 

  29. Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    Article  Google Scholar 

  30. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    Article  Google Scholar 

  31. Taylor, Z. N. et al. Stabilization of O–O bonds by d0 cations in Li4+xNi1−xWO6 (0 ≤ x ≤ 0.25) rock salt oxides as the origin of large voltage hysteresis. J. Am. Chem. Soc. 141, 7333–7346 (2019).

    Article  Google Scholar 

  32. Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    Article  Google Scholar 

  33. House, R. A. et al. First cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    Article  Google Scholar 

  34. Meng, Y. et al. Inelastic X-ray scattering of dense solid oxygen: evidence for intermolecular bonding. Proc. Natl Acad. Sci. USA 105, 11640–11644 (2008).

    Article  Google Scholar 

  35. Croy, J. R. et al. First-charge instabilities of layered-layered lithium-ion-battery materials. Phys. Chem. Chem. Phys. 17, 24382–24391 (2015).

    Article  Google Scholar 

  36. Mohanty, D. et al. Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Phys. Chem. Chem. Phys. 15, 19496–19509 (2013).

    Article  Google Scholar 

  37. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the US Department of Energy’s “Deep Dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    Article  Google Scholar 

  38. Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article  Google Scholar 

  39. Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article  Google Scholar 

  40. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  Google Scholar 

  41. Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    Article  Google Scholar 

  42. Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article  Google Scholar 

  43. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  Google Scholar 

  44. Ji, H. et al. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nat. Energy 5, 213–221 (2020).

    Article  Google Scholar 

  45. Rana, J. et al. Quantifying the capacity contributions during activation of Li2MnO3. ACS Energy Lett. 5, 634–641 (2020).

    Article  Google Scholar 

  46. Guerrini, N. et al. Charging mechanism of Li2MnO3. Chem. Mater. 32, 3733–3740 (2020).

    Article  Google Scholar 

  47. Boivin, E. et al. The role of Ni and Co in suppressing O‐Loss in Li‐rich layered cathodes. Adv. Funct. Mater. 31, 2003660 (2021).

    Article  Google Scholar 

  48. Freire, M. et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    Article  Google Scholar 

  49. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  Google Scholar 

  50. Sharpe, R. et al. Redox chemistry and the role of trapped molecular O2 in Li-rich disordered rocksalt oxyfluoride cathodes. J. Am. Chem. Soc. 142, 21799–21809 (2020).

    Article  Google Scholar 

  51. Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

    Article  Google Scholar 

  52. Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016).

    Article  Google Scholar 

  53. Arhammar, C. et al. Unveiling the complex electronic structure of amorphous metal oxides. Proc. Natl Acad. Sci. USA 108, 6355–6360 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the Engineering and Physical Sciences Research Council (EPSRC), Henry Royce Institute for Advanced Materials (under grant IDs EP/R00661X/1, EP/S019367/1, EP/R010145/1) and the Faraday Institution Next Generation Li-ion Cathodes project CATMAT (under grant ID FIRG016) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by R.A.H., J.-J.M. and P.G.B. with contributions and revisions from all authors.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Yong Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

House, R.A., Marie, JJ., Pérez-Osorio, M.A. et al. The role of O2 in O-redox cathodes for Li-ion batteries. Nat Energy 6, 781–789 (2021). https://doi.org/10.1038/s41560-021-00780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00780-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing