Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction


Electrochemical reduction of CO2 is a promising route for sustainable production of fuels. A grand challenge is developing low-cost and efficient electrocatalysts that can enable rapid conversion with high product selectivity. Here we design a series of nickel phthalocyanine molecules supported on carbon nanotubes as molecularly dispersed electrocatalysts (MDEs), achieving CO2 reduction performances that are superior to aggregated molecular catalysts in terms of stability, activity and selectivity. The optimized MDE with methoxy group functionalization solves the stability issue of the original nickel phthalocyanine catalyst and catalyses the conversion of CO2 to CO with >99.5% selectivity at high current densities of up to −300 mA cm−2 in a gas diffusion electrode device with stable operation at −150 mA cm−2 for 40 h. The well-defined active sites of MDEs also facilitate the in-depth mechanistic understandings from in situ/operando X-ray absorption spectroscopy and theoretical calculations on structural factors that affect electrocatalytic performance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure and CO2RR performance of NiPc MDEs.
Fig. 2: GDEs with NiPc MDEs.
Fig. 3: In situ/operando XAS of NiPc MDEs.
Fig. 4: DFT calculations of original and substituted NiPcs catalysing CO2RR.

Data availability

The authors declare that the main data supporting the findings of this study are available within the article, its Supplementary Information and source data. Source data are provided with this paper.


  1. 1.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Google Scholar 

  2. 2.

    Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Google Scholar 

  3. 3.

    Artero, V. & Fontecave, M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

    Google Scholar 

  4. 4.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Google Scholar 

  5. 5.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Google Scholar 

  6. 6.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Google Scholar 

  7. 7.

    Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Google Scholar 

  8. 8.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Google Scholar 

  9. 9.

    Zheng, T., Jiang, K. & Wang, H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1802066 (2018).

    Google Scholar 

  10. 10.

    De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Google Scholar 

  11. 11.

    Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Google Scholar 

  12. 12.

    Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Google Scholar 

  13. 13.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Google Scholar 

  14. 14.

    Dinh, C.-T., García de Arquer, F. P., Sinton, D. & Sargent, E. H. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media. ACS Energy Lett. 3, 2835–2840 (2018).

    Google Scholar 

  15. 15.

    Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Google Scholar 

  16. 16.

    Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

    Google Scholar 

  17. 17.

    Zhao, C. et al. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 139, 8078–8081 (2017).

    Google Scholar 

  18. 18.

    Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

    Google Scholar 

  19. 19.

    Lieber, C. M. & Lewis, N. S. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106, 5033–5034 (1984).

    Google Scholar 

  20. 20.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Google Scholar 

  21. 21.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Google Scholar 

  22. 22.

    Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Google Scholar 

  23. 23.

    Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Google Scholar 

  24. 24.

    Zhu, M., Ye, R., Jin, K., Lazouski, N. & Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 3, 1381–1386 (2018).

    Google Scholar 

  25. 25.

    Jiang, Z. et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 12, 2330–2334 (2019).

  26. 26.

    Hu, X.-M., Rønne, M. H., Pedersen, S. U., Skrydstrup, T. & Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017).

    Google Scholar 

  27. 27.

    Zhu, M. et al. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem. Int. Ed. 58, 6595–6599 (2019).

    Google Scholar 

  28. 28.

    Choi, J. et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 4, 666–672 (2019).

    Google Scholar 

  29. 29.

    Maurin, A. & Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 138, 2492–2495 (2016).

    Google Scholar 

  30. 30.

    Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Google Scholar 

  31. 31.

    Li, X. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 139, 14889–14892 (2017).

    Google Scholar 

  32. 32.

    Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Google Scholar 

  33. 33.

    Yan, C. et al. Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 11, 1204–1210 (2018).

    Google Scholar 

  34. 34.

    Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    Google Scholar 

  35. 35.

    Sorokin, A. B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152–8191 (2013).

    Google Scholar 

  36. 36.

    Zhang, Z. et al. Reaction mechanisms of well-defined metal–N4 sites in electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 16339–16342 (2018).

    Google Scholar 

  37. 37.

    Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Google Scholar 

  38. 38.

    Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Google Scholar 

  39. 39.

    Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    Google Scholar 

  40. 40.

    Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    Google Scholar 

  41. 41.

    Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Google Scholar 

  42. 42.

    Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017).

    Google Scholar 

  43. 43.

    Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Google Scholar 

  44. 44.

    Wu, Y. et al. Electroreduction of CO2 catalyzed by a heterogenized Zn–porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 3, 847–852 (2017).

    Google Scholar 

  45. 45.

    Weng, Z. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).

    Google Scholar 

  46. 46.

    Rollmann, L. D. & Iwamoto, R. T. Electrochemistry, electron paramagnetic resonance, and visible spectra of cobalt, nickel, copper, and metal-free phthalocyanines in dimethyl sulfoxide. J. Am. Chem. Soc. 90, 1455–1463 (1968).

    Google Scholar 

  47. 47.

    Chen, L. X. et al. Capturing a photoexcited molecular structure through time-domain X-ray absorption fine structure. Science 292, 262–264 (2001).

    Google Scholar 

  48. 48.

    Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-ray Spectrom. 37, 572–584 (2008).

    Google Scholar 

  49. 49.

    Froehlich, J. D. & Kubiak, C. P. The homogeneous reduction of CO2 by [Ni(cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J. Am. Chem. Soc. 137, 3565–3573 (2015).

    Google Scholar 

  50. 50.

    Costentin, C. & Savéant, J.-M. Towards an intelligent design of molecular electrocatalysts. Nat. Rev. Chem. 1, 0087 (2017).

    Google Scholar 

  51. 51.

    Kim, S.-J., Matsumoto, M. & Shigehara, K. Synthesis and electrical properties of poly(μ-1,4-diisocyanobenzene) octacyanophthalocyaninatoiron(ii). Synth. Met. 107, 27–33 (1999).

    Google Scholar 

  52. 52.

    Yslas, E. I., Rivarola, V. & Durantini, E. N. Synthesis and photodynamic activity of zinc(ii) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorg. Med. Chem. 13, 39–46 (2005).

    Google Scholar 

  53. 53.

    Kim, S.-J., Matsumoto, M. & Shigehara, K. Synthesis and electrical properties of one-dimensional octacyanometallophthalocyanine (M≡Fe, Co) polymers. J. Porphyr. Phthalocyanines 04, 136–144 (2000).

    Google Scholar 

  54. 54.

    Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Google Scholar 

  55. 55.

    Wang, M., Árnadóttir, L., Xu, Z. J. & Feng, Z. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11, 47 (2019).

    Google Scholar 

  56. 56.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Google Scholar 

  57. 57.

    Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).

  58. 58.

    Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Google Scholar 

  59. 59.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  60. 60.

    Steinmetz, M. & Grimme, S. Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts. ChemistryOpen 2, 115–124 (2013).

    Google Scholar 

  61. 61.

    Andrae, D., Häußermann, U., Dolg, M., Stoll, H. & Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990).

    Google Scholar 

  62. 62.

    Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Google Scholar 

  63. 63.

    Gordon, M. S. The isomers of silacyclopropane. Chem. Phys. Lett. 76, 163–168 (1980).

    Google Scholar 

  64. 64.

    Binning, R. & Curtiss, L. Compact contracted basis sets for third-row atoms: Ga–Kr. J. Comput. Chem. 11, 1206–1216 (1990).

    Google Scholar 

  65. 65.

    Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138 (1977).

    Google Scholar 

  66. 66.

    Lu, T. & Chen, F. Calculation of molecular orbital composition. Acta Chim. Sinica 69, 2393–2406 (2011).

    Google Scholar 

  67. 67.

    Mayer, I. Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).

    Google Scholar 

  68. 68.

    Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Google Scholar 

  69. 69.

    Buck, D. & Collins, A. Persistence of Vision Raytracer 3.6 (Persistence of Vision, 2004).

  70. 70.

    Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Google Scholar 

  71. 71.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Google Scholar 

Download references


Y.L. acknowledges financial support from Shenzhen fundamental research funding (grant no. JCYJ20160608140827794) and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices (grant no. 2019B121205001). H.W. acknowledges funding support from the US National Science Foundation (grant no. CHE-1651717). Z.F. thanks the start-up support from Oregon State University. Y.-G.W. acknowledges financial supports from Guangdong Provincial Key Laboratory of Catalysis (grant no. 2020B121201002). J.L. is supported by National Natural Science Foundation of China (grant nos. 21590792, 91426302 and 21433005). The computational resource is supported from the Center for Computational Science and Engineering (SUSTech) and Tsinghua National Laboratory for Information Science and Technology. TEM, MS and ICP data were obtained using equipment maintained by SUSTech Core Research Facilities. We acknowledge the technical support from R. Rosenberg at 4-ID, Advanced Photon Source (APS) of Argonne National Laboratory (ANL). XAS measurements were performed at 9-BM and DND-CAT 5-BM. The use of APS of ANL is supported by Department of Energy under contract no. DE-AC02-06CH11357. DND-CAT is supported through E. I. duPont de Nemours and Company, Northwestern University and The Dow Chemical Company.

Author information




Y.L. and X.Z. conceived the project and designed the experiments. X.Z., Y.W., W.P. and Z.J. carried out the synthesis, material characterizations and electrochemical measurements. M.G. carried out the STEM characterizations. M.W., G.E.S., H.Z., M.L., Q.M. and Z.F. carried out the XAS characterizations. Z.Z., Y.-G.W. and J.L. performed the DFT calculations. Y.L., X.Z., H.W. and H.D. analysed the data. Y.L., X.Z. and H.D. prepared the manuscript with input from all the authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yang-Gang Wang or Zhenxing Feng or Yongye Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–4 and refs. 1–15.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Gu, M. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy 5, 684–692 (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing