Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current status and future directions of multivalent metal-ion batteries

A Publisher Correction to this article was published on 30 July 2020

This article has been updated

Abstract

Batteries based on multivalent metals have the potential to meet the future needs of large-scale energy storage, due to the relatively high abundance of elements such as magnesium, calcium, aluminium and zinc in the Earth’s crust. However, the complexity of multivalent metal-ion chemistries has led to rampant confusions, technical challenges, and eventually doubts and uncertainties about the future of these technologies. In this Review, we clarify the key strengths as well as common misconceptions of multivalent metal-based batteries. We then examine the growth behaviour of metal anodes, which is crucial for their safety promises but hitherto unestablished. We further discuss scrutiny of anode efficiency and cathode storage mechanism pertaining to complications arising from electrolyte solutions. Finally, we critically review existing cathode materials and discuss design strategies to enable genuine multivalent metal-ion-based energy storage materials with competitive performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical characteristics comparison.
Fig. 2: Typical plating morphologies of multivalent metal-ion metals.
Fig. 3: Electrochemical characterization methods for metal−electrolyte solutions systems.
Fig. 4: Schematic illustration of the mechanisms that enable multivalent metal-ion cathodes.

Similar content being viewed by others

Change history

References

  1. Weil, M., Ziemann, S. & Peters, J. in Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost (eds Pistoia, G. & Liaw, B.) 59–74 (Springer International Publishing, 2018).

  2. Salama, M. et al. Metal–sulfur batteries: overview and research methods. ACS Energy Lett. 4, 436–446 (2019).

    Google Scholar 

  3. Liu, M. et al. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8, 964–974 (2015).

    Google Scholar 

  4. Chung, S.-H. & Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31, 1901125 (2019).

    Google Scholar 

  5. Rong, Z. et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem. Mater. 27, 6016–6021 (2015). This work proposed the relationship between ion coordination environment and energy barrier for solid-state multivalent metal-ion diffusion.

    Google Scholar 

  6. Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 196, 7048–7055 (2011). This work investigated the origin of the non-dendritic magnesium deposition in comparison with the dendritic lithium deposition.

    Google Scholar 

  7. Crowe, A. J., DiMeglio, J. L., Stringham, K. K. & Bartlett, B. M. Kinetics of magnesium deposition and stripping from non-aqueous electrolytes. J. Phys. Chem. C 121, 20613–20620 (2017).

    Google Scholar 

  8. Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. 54, 7900–7904 (2015). This work reported a non-corrosive, non-nucleophilic electrolyte solutions that enable reversible magnesium plating and stripping.

    Google Scholar 

  9. Ta, K., See, K. A. & Gewirth, A. A. Elucidating Zn and Mg electrodeposition mechanisms in nonaqueous electrolytes for next-generation metal batteries. J. Phys. Chem. C 122, 13790–13796 (2018).

    Google Scholar 

  10. Jäckle, M., Helmbrecht, K., Smits, M., Stottmeister, D. & Groß, A. Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ. Sci. 11, 3400–3407 (2018).

    Google Scholar 

  11. Jäckle, M. & Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 141, 174710 (2014).

    Google Scholar 

  12. Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    Google Scholar 

  13. Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775–780 (1990).

    Google Scholar 

  14. Davidson, R. et al. Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities. Mater. Horiz. 7, 843–854 (2020).

    Google Scholar 

  15. Ding, M. S., Diemant, T., Behm, R. J., Passerini, S. & Giffin, G. A. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J. Electrochem. Soc. 165, A1983–A1990 (2018).

    Google Scholar 

  16. Ponrouch, A., Frontera, C., Barde, F. & Palacin, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    Google Scholar 

  17. Wang, D. et al. Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16 (2017). This work reported calcium plating and stripping at room temperature in an organic electrolyte solution with low polarization and relatively high efficiency.

    Google Scholar 

  18. Shyamsunder, A., Blanc, L. E., Assoud, A. & Nazar, L. F. Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 4, 2271–2276 (2019).

    Google Scholar 

  19. Li, Z., Fuhr, O., Fichtner, M. & Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 12, 3496–3501 (2019).

    Google Scholar 

  20. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Google Scholar 

  21. Zhao, Q. et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018).

    Google Scholar 

  22. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Google Scholar 

  23. Han, S.-D. et al. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl. Mater. Inter. 8, 3021–3031 (2016).

    Google Scholar 

  24. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Google Scholar 

  25. Pradhan, D. & Reddy, R. G. Dendrite-free aluminum electrodeposition from AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid electrolytes. Metall. Mater. Trans. B 43, 519–531 (2012).

    Google Scholar 

  26. Woods, J., Bhattarai, N., Chapagain, P., Yang, Y. & Neupane, S. In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 56, 619–640 (2019).

    Google Scholar 

  27. Chen, H. et al. Oxide film efficiently suppresses dendrite growth in aluminum-ion battery. ACS Appl. Mater. Inter. 9, 22628–22634 (2017).

    Google Scholar 

  28. Peled, E. & Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Google Scholar 

  29. Aurbach, D., Skaletsky, R. & Gofer, Y. The electrochemical behavior of calcium electrodes in a few organic electrolytes. J. Electrochem. Soc. 138, 3536–3545 (1991).

    Google Scholar 

  30. Yu, J., McMahon, B. W., Boatz, J. A. & Anderson, S. L. Aluminum nanoparticle production by acetonitrile-assisted milling: effects of liquid- vs vapor-phase milling and of milling method on particle size and surface chemistry. J. Phys. Chem. C 120, 19613–19629 (2016).

    Google Scholar 

  31. Lu, Z., Schechter, A., Moshkovich, M. & Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 466, 203–217 (1999).

    Google Scholar 

  32. Singh, N. et al. Achieving high cycling rates via in situ generation of active nanocomposite metal anodes. ACS Appl. Energy Mater. 1, 4651–4661 (2018).

    Google Scholar 

  33. Son, S.-B. et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 10, 532–539 (2018).

    Google Scholar 

  34. Gao, T. et al. Existence of solid electrolyte interphase in Mg batteries: Mg/S chemistry as an example. ACS Appl. Mater. Inter. 10, 14767–14776 (2018).

    Google Scholar 

  35. Chen, T., Ceder, G., Sai Gautam, G. & Canepa, P. Evaluation of Mg compounds as coating materials in Mg batteries. Front. Chem. 7, 24 (2019).

    Google Scholar 

  36. Tamura, S., Yamane, M., Hoshino, Y. & Imanaka, N. Highly conducting divalent Mg2+ cation solid electrolytes with well-ordered three-dimensional network structure. J. Solid State Chem. 235, 7–11 (2016).

    Google Scholar 

  37. Kisu, K. et al. Magnesium borohydride ammonia borane as a magnesium ionic conductor. ACS Appl. Energy Mater. 3, 3174–3179 (2020).

    Google Scholar 

  38. Canepa, P. et al. High magnesium mobility in ternary spinel chalcogenides. Nat. Commun. 8, 1759 (2017).

    Google Scholar 

  39. Pour, N., Gofer, Y., Major, D. T. & Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270–6278 (2011).

    Google Scholar 

  40. Pour, N. et al. Multinuclear magnetic resonance spectroscopy and density function theory calculations for the identification of the equilibrium species in THF solutions of organometallic complexes suitable as electrolyte solutions for rechargeable Mg batteries. Organometallics 32, 3165–3173 (2013).

    Google Scholar 

  41. Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011). This work reported non-nucleophilic electrolyte solutions that enable reversible magnesium plating and stripping.

    Google Scholar 

  42. Doe, R. E. et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014).

    Google Scholar 

  43. Carter, T. J. et al. Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. 53, 3173–3177 (2014).

    Google Scholar 

  44. Zhao-Karger, Z. et al. Toward highly reversible magnesium–sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte. ACS Energy Lett. 3, 2005–2013 (2018).

    Google Scholar 

  45. Lipson, A. L. et al. Practical stability limits of magnesium electrolytes. J. Electrochem. Soc. 163, A2253–A2257 (2016).

    Google Scholar 

  46. Liu, T. B. et al. A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J. Mater. Chem. A 2, 3430–3438 (2014).

    Google Scholar 

  47. Du, A. et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ. Sci. 10, 2616–2625 (2017).

    Google Scholar 

  48. Luo, J., Bi, Y., Zhang, L., Zhang, X. & Liu, T. L. A stable, non-corrosive perfluorinated pinacolatoborate Mg electrolyte for rechargeable Mg. batteries. Angew. Chem. Int. Ed. 58, 6967–6971 (2019).

    Google Scholar 

  49. Cheng, Y. W. et al. Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2]2+ cation complex in dimethoxyethane. Phys. Chem. Chem. Phys. 17, 13307–13314 (2015).

    Google Scholar 

  50. Shterenberg, I. et al. Evaluation of (CF3SO2)2N (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118–A7128 (2015).

    Google Scholar 

  51. Zhang, Y., Liu, S., Ji, Y., Ma, J. & Yu, H. Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018).

    Google Scholar 

  52. Attias, R., Salama, M., Hirsch, B., Gofer, Y. & Aurbach, D. Solvent effects on the reversible intercalation of magnesium-ions into V2O5 electrodes. ChemElectroChem 5, 3514–3524 (2018).

    Google Scholar 

  53. Salama, M. et al. Unique behavior of dimethoxyethane (DME)/Mg(N(SO2CF3)2)2 solutions. J. Phys. Chem. C 120, 19586–19594 (2016).

    Google Scholar 

  54. Seguin, T. J., Hahn, N. T., Zavadil, K. R. & Persson, K. A. Elucidating non-aqueous solvent stability and associated decomposition mechanisms for Mg energy storage applications from first-principles. Front. Chem. 7, 175 (2019).

    Google Scholar 

  55. Senoh, H. et al. Sulfone-based electrolyte solutions for rechargeable magnesium batteries using 2,5-dimethoxy-1,4-benzoquinone positive electrode. J. Electrochem. Soc. 161, A1315–A1320 (2014).

    Google Scholar 

  56. Yagi, S., Tanaka, A., Ichikawa, Y., Ichitsubo, T. & Matsubara, E. Electrochemical stability of magnesium battery current collectors in a grignard reagent-based electrolyte. J. Electrochem. Soc. 160, C83–C88 (2013).

    Google Scholar 

  57. Hahn, N. T. et al. Enhanced stability of the carba-closo-dodecaborate anion for high-voltage battery electrolytes through rational design. J. Am. Chem. Soc. 140, 11076–11084 (2018).

    Google Scholar 

  58. Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J. Am. Chem. Soc. 137, 3411–3420 (2015).

    Google Scholar 

  59. Attias, R., Salama, M., Hirsch, B., Goffer, Y. & Aurbach, D. Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3, 27–52 (2019).

    Google Scholar 

  60. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J.-G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Google Scholar 

  61. Sun, X., Bonnick, P. & Nazar, L. F. Layered TiS2 positive electrode for Mg batteries. ACS Energy Lett. 1, 297–301 (2016).

    Google Scholar 

  62. Yoo, H. D. et al. Intercalation of magnesium into a layered vanadium oxide with high capacity. ACS Energy Lett. 4, 1528–1534 (2019).

    Google Scholar 

  63. Canepa, P. et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017).

    Google Scholar 

  64. Sa, N. et al. Is alpha-V2O5 a cathode material for Mg insertion batteries? J. Power Sources 323, 44–50 (2016).

    Google Scholar 

  65. Verrelli, R. et al. On the strange case of divalent ions intercalation in V2O5. J. Power Sources 407, 162–172 (2018). This work demonstrated the insuitability of a-V2O5 for magnesium and calcium storage despite the long-time belief of this material as a host for divalent metal ions, highlighting the importance of caution in deducing cathode storage chemistries for multivalent batteries.

    Google Scholar 

  66. Zhao, Q. et al. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 4, eaau8131 (2018).

    Google Scholar 

  67. Dong, H. et al. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782–793 (2019). This work distinguished between complex-ion storage and pure metal-ion storage in magnesium battery cathodes and demonstrated the importance of the latter for practical cells performance.

    Google Scholar 

  68. Lin, M.-C. et al. An ultrafast rechargeable aluminium-ion battery. Nature 520, 324–328 (2015).

    Google Scholar 

  69. Kim, D. J. et al. Rechargeable aluminium organic batteries. Nat. Energy 4, 51–59 (2018).

    Google Scholar 

  70. Li, Z. et al. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nat. Commun. 9, 5115 (2018).

    Google Scholar 

  71. Haber, S. & Leskes, M. What can we learn from solid state NMR on the electrode–electrolyte interface? 30, 1706496 (2018).

    Google Scholar 

  72. Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881–892 (2018).

    Google Scholar 

  73. Wu, C. et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10, 7 (2019).

    Google Scholar 

  74. Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent Ion batteries. Nano Lett. 13, 5748–5752 (2013).

    Google Scholar 

  75. Kraychyk, K. V., Wang, S., Piveteau, L. & Koyalenko, M. V. Efficient aluminum chloride natural graphite battery. Chem. Mater. 29, 4484–4492 (2017).

    Google Scholar 

  76. Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000). This work demonstrated reversible and reasonably fast magnesium-ion battery systems with the discovery of suitable complex ethereal electrolyte solutions and Chevrel phase cathodes such as Mo6S8.

    Google Scholar 

  77. Sun, X. Q. et al. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273–2277 (2016). This work reported the first magnesium storage cathode material since the discovery of Mo6S8 that shows convincing performance.

    Google Scholar 

  78. Pan, C., Zhang, R., Nuzzo, R. G. & Gewirth, A. A. ZnNixMnxCo2–2xO4 spinel as a high-voltage and high-capacity cathode material for nonaqueous Zn-ion batteries. Adv. Energy Mater. 8, 1800589 (2018).

    Google Scholar 

  79. Pan, C., Nuzzo, R. G. & Gewirth, A. A. ZnAlxCo2–xO4 spinels as cathode materials for non-aqueous Zn batteries with an open circuit voltage of ≤2 V. Chem. Mater. 29, 9351–9359 (2017).

    Google Scholar 

  80. Yaghoobnejad Asl, H. & Manthiram, A. Mass transfer of divalent ions in an oxide host: comparison of Mg2+ and Zn2+ diffusion in hexagonal KxW3O9 bronze. Chem. Mater. 31, 2296–2307 (2019).

    Google Scholar 

  81. Geng, L. et al. Crystal structure transformation in Chevrel phase Mo6S8 induced by aluminum intercalation. Chem. Mater. 30, 8420–8425 (2018).

    Google Scholar 

  82. Wan, L. W. F., Perdue, B. R., Apblett, C. A. & Prendergast, D. Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface. Chem. Mater. 27, 5932–5940 (2015).

    Google Scholar 

  83. Levi, M. D. et al. The effect of the anionic framework of Mo6X8 Chevrel phase (X = S, Se) on the thermodynamics and the kinetics of the electrochemical insertion of Mg2+ ions. Solid State Ionics 176, 1695–1699 (2005).

    Google Scholar 

  84. West, A. R. in Basic solid state chemistry Ch. 4 (John Wiley & Sons, 1988).

  85. Adelstein, N. & Wood, B. C. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chem. Mater. 28, 7218–7231 (2016).

    Google Scholar 

  86. Mao, M. et al. Tuning anionic chemistry to improve kinetics of Mg intercalation. Chem. Mater. 31, 3183–3191 (2019).

    Google Scholar 

  87. Brown, I. D. What factors determine cation coordination numbers? Acta Crystallogr. B44, 545–553 (1988).

    Google Scholar 

  88. Hannah, D. C., Sai Gautam, G., Canepa, P., Rong, Z. & Ceder, G. Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem. Commun. 53, 5171–5174 (2017).

    Google Scholar 

  89. Jung, S. C. & Han, Y.-K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J. Phys. Chem. C 122, 17643–17649 (2018).

    Google Scholar 

  90. Rong, Z. et al. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries. Chem. Commun. 53, 7998–8001 (2017).

    Google Scholar 

  91. Zhao-Karger, Z. et al. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5, 1401155 (2015).

    Google Scholar 

  92. Zhang, Z. et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017).

    Google Scholar 

  93. Tian, H. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).

    Google Scholar 

  94. Mao, M. et al. High-energy-density rechargeable Mg battery enabled by a displacement reaction. Nano Lett. 19, 6665–6672 (2019).

    Google Scholar 

  95. Gao, T. et al. Reversible S0/MgSx redox chemistry in a MgTFSI2/MgCl2/DME electrolyte for rechargeable Mg/S batteries. Angew. Chem. Int. Ed. 56, 13526–13530 (2017).

    Google Scholar 

  96. Salama, M. et al. On the feasibility of practical Mg–S batteries: practical limitations associated with metallic magnesium anodes. ACS Appl. Mater. Inter. 10, 36910–36917 (2018).

    Google Scholar 

  97. Gao, T. et al. Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2–DME electrolyte. Adv. Mater. 30, 1704313 (2018).

    Google Scholar 

  98. Li, X. et al. Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 8, 1701728 (2018).

    Google Scholar 

  99. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Google Scholar 

  100. Andrews, J. L. et al. Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 4, 564–585 (2018).

    Google Scholar 

  101. Arthur, T. S., Singh, N. & Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012).

    Google Scholar 

  102. Yao, Z., Hegde, V. I., Aspuru-Guzik, A. & Wolverton, C. Discovery of calcium-metal alloy anodes for reversible Ca-ion batteries. Adv. Energy Mater. 9, 1802994 (2019).

    Google Scholar 

  103. Gershinsky, G., Yoo, H. D., Gofer, Y. & Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964–10972 (2013).

    Google Scholar 

  104. Licht, S. Zinc sulfur battery. US patent 6207324 (2001).

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE), as part of the Battery 500 Consortium under Contract DE-EE0008234. We acknowledge Mr. Karun Kumar Rao for the assistance in preparing Fig. 4a–h.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doron Aurbach or Yan Yao.

Ethics declarations

Competing interests

Y.Y. has an equity interest in Polymax Energy Inc. Y.Y.’s relationship with Polymax Energy Inc. has been reviewed and approved by the University of Houston in accordance with its conflict of interest policies.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Dong, H., Aurbach, D. et al. Current status and future directions of multivalent metal-ion batteries. Nat Energy 5, 646–656 (2020). https://doi.org/10.1038/s41560-020-0655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-020-0655-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing