Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature

Abstract

Methane activation and utilization are among the major challenges of modern science. Methane is potentially an important feedstock for manufacturing value-added fuels and chemicals. However, most known processes require excessive operating temperatures and exhibit insufficient selectivity. Here, we demonstrate a photochemical looping strategy for highly selective stoichiometric conversion of methane to ethane at ambient temperature over silver–heteropolyacid–titania nanocomposites. The process involves a stoichiometric reaction of methane with highly dispersed cationic silver under illumination, which results in the formation of methyl radicals. Recombination of the generated methyl radicals leads to the selective, and almost quantitative, formation of ethane. Cationic silver species are simultaneously reduced to metallic silver. The silver–heteropolyacid–titania nanocomposites can be reversibly regenerated in air under illumination at ambient temperature. The photochemical looping process achieves a methane coupling selectivity of over 90%, a quantitative yield of ethane of over 9%, high quantum efficiency (3.5% at 362 nm) and excellent stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photochemical coupling of methane on different materials.
Fig. 2: Changes of Ag–HPW/TiO2 after methane photochemical coupling.
Fig. 3: X-ray diffraction patterns of nanocomposites.
Fig. 4: TEM and STEM-EDX mapping images of fresh Ag–HPW/TiO2 sample.
Fig. 5: Photochemical coupling of methane and ethane on Ag–HPW/TiO2.
Fig. 6: Reaction and regeneration of Ag–HPW/TiO2.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper, Supplementary Information and Source Data files.

References

  1. 1.

    McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).

    Google Scholar 

  2. 2.

    Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Energ. Environ. Sci. 7, 2580–2591 (2014).

    Google Scholar 

  3. 3.

    Taarning, E. et al. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energ. Environ. Sci. 4, 793–804 (2011).

    Google Scholar 

  4. 4.

    Dapsens, P. Y., Mondelli, C. & Pérez-Ramírez, J. Biobased chemicals from conception toward industrial reality: lessons learned and to be learned. ACS Catal. 2, 1487–1499 (2012).

    Google Scholar 

  5. 5.

    Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O. & Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energ. Environ. Sci. 6, 3112–3135 (2013).

    Google Scholar 

  6. 6.

    Kondratenko, E. V. et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 7, 366–381 (2017).

    Google Scholar 

  7. 7.

    Kaygusuz, K. Global energy issues, climate change and wind power for clean and sustainable energy development. J. Eng. Res. Appl. Sci. 4, 317–327 (2015).

    Google Scholar 

  8. 8.

    Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).

    Google Scholar 

  9. 9.

    Hammond, C., Conrad, S. & Hermans, I. Oxidative methane upgrading. ChemSusChem 5, 1668–1686 (2012).

    Google Scholar 

  10. 10.

    Choudhary, T. V. & Choudhary, V. R. Energy‐efficient syngas production through catalytic oxy‐methane reforming reactions. Angew. Chem. Int. Ed. 47, 1828–1847 (2008).

    Google Scholar 

  11. 11.

    Song, H., Meng, X. G., Wang, Z. J., Liu, H. M. & Ye, J. H. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

    Google Scholar 

  12. 12.

    Jang, W. J., Shim, J. O., Kim, H. M., Yoo, S. Y. & Roh, H. S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 324, 15–26 (2019).

    Google Scholar 

  13. 13.

    Lunsford, J. H. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 63, 165–174 (2000).

    Google Scholar 

  14. 14.

    Webb, J. R., Bolaño, T. & Gunnoe, T. B. Catalytic oxy‐functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. ChemSusChem 4, 37–49 (2011).

    Google Scholar 

  15. 15.

    Wang, B., Albarracín-Suazo, S., Pagán-Torres, Y. & Nikolla, E. Advances in methane conversion processes. Catal. Today 285, 147–158 (2017).

    Google Scholar 

  16. 16.

    Keller, G. & Bhasin, M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. J. Catal. 73, 9–19 (1982).

    Google Scholar 

  17. 17.

    Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high‐performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    Google Scholar 

  18. 18.

    Stansch, Z., Mleczko, L. & Baerns, M. Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst. Ind. Eng. Chem. Res. 36, 2568–2579 (1997).

    Google Scholar 

  19. 19.

    Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. 34, 970–980 (1995).

    Google Scholar 

  20. 20.

    Kondratenko, E.V. & Baerns, M. in Handbook of Heterogeneous Catalysis 2nd edn, Vol. 6 (eds Ertl, G. et al.) 3010–3023 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).

  21. 21.

    Kuo, J., Kresge, C. & Palermo, R. Evaluation of direct methane conversion to higher hydrocarbons and oxygenates. Catal. Today 4, 463–470 (1989).

    Google Scholar 

  22. 22.

    Kanai, M. Photocatalytic upgrading of natural gas. Science 361, 647–648 (2018).

    Google Scholar 

  23. 23.

    Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).

    Google Scholar 

  24. 24.

    Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Highly dispersed Ce (III) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. Chem. Commun. 38, 4824–4826 (2005).

    Google Scholar 

  25. 25.

    Yuliati, L., Tsubota, M., Satsuma, A., Itoh, H. & Yoshida, H. Photoactive sites on pure silica materials for nonoxidative direct methane coupling. J. Catal. 238, 214–220 (2006).

    Google Scholar 

  26. 26.

    Yuliati, L., Hattori, T., Itoh, H. & Yoshida, H. Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J. Catal. 257, 396–402 (2008).

    Google Scholar 

  27. 27.

    Li, L. et al. Efficient sunlight‐driven dehydrogenative coupling of methane to ethane over a Zn+‐modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011).

    Google Scholar 

  28. 28.

    Li, L. et al. Synergistic effect on the photoactivation of the methane C-H bond over Ga3+‐modified ETS‐10. Angew. Chem. Int. Ed. 51, 4702–4706 (2012).

    Google Scholar 

  29. 29.

    Meng, L. S. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energ. Environ. Sci. 11, 294–298 (2018).

    Google Scholar 

  30. 30.

    Wu, S. Q. et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019).

    Google Scholar 

  31. 31.

    Yu, L., Shao, Y. & Li, L. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 204, 216–223 (2017).

    Google Scholar 

  32. 32.

    Yu, L. & Li, D. Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2. Catal. Sci. Techn. 7, 635–640 (2017).

    Google Scholar 

  33. 33.

    Amano, F. et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 4, 502–507 (2019).

    Google Scholar 

  34. 34.

    Yu, X., de Waele, V., Löfberg, A., Ordomsky, V. & Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019).

    Google Scholar 

  35. 35.

    Yoshida, H. et al. Active Ag species in MFI zeolite for direct methane conversion in the light and dark. Res. Chem. Intermed. 29, 897–910 (2003).

  36. 36.

    Ozin, G. A. & Hugues, F. Selective photoactivation of carbon-hydrogen bonds in paraffinic hydrocarbons. Dimerization of alkanes. J. Phys. Chem. 86, 5174–5179 (1982).

    Google Scholar 

  37. 37.

    Wang, H. et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014).

    Google Scholar 

  38. 38.

    Sun, Z., Zhang, Y., Li, N., Xu, L. & Wang, T. Enhanced photoconductivity of a polyoxometalate–TiO2 composite for gas sensing applications. J. Mater. Chem. C. 3, 6153–6157 (2015).

    Google Scholar 

  39. 39.

    Meng, P. et al. Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst. Appl. Catal. B 226, 487–498 (2018).

    Google Scholar 

  40. 40.

    Tran, P. D., Wong, L. H., Barberbcd, J. & Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5, 5902–5918 (2002).

    Google Scholar 

  41. 41.

    Yu, X., Moldovan, S., Ordomsky, V. V. & Khodakov, A. Y. Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature. Nanoscale Adv. 1, 4321–4330 (2019).

    Google Scholar 

  42. 42.

    Gondal, M., Hameed, A., Yamani, Z. & Arfaj, A. Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts. Chem. Phys. Lett. 392, 372–377 (2004).

    Google Scholar 

  43. 43.

    Murcia-López, S. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 7, 2878–2885 (2017).

    Google Scholar 

  44. 44.

    Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).

    Google Scholar 

  45. 45.

    Barton, D. G., Shtein, M., Wilson, R. D., Soled, S. L. & Iglesia, E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 103, 630–640 (1999).

    Google Scholar 

  46. 46.

    Weber, R. S. Effect of local structure on the UV-visible absorption edges of molybdenum oxide clusters and supported molybdenum oxides. J. Catal. 151, 470–474 (1995).

    Google Scholar 

  47. 47.

    Nakarada, Ð. & Petković, M. Mechanistic insights on how hydroquinone disarms OH and OOH radicals. Int. J. Quantum Chem. 118, e25496 (2018).

    Google Scholar 

  48. 48.

    Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H. & Sangiliyandi, G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 62, 4411–4413 (2008).

    Google Scholar 

  49. 49.

    Prieto, P. et al. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 8807–8813 (2012).

    Google Scholar 

  50. 50.

    Gaarenstroom, S. & Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 67, 3500–3506 (1977).

    Google Scholar 

  51. 51.

    Anthony, M. & Seah, M. XPS: energy calibration of electron spectrometers. 1—An absolute, traceable energy calibration and the provision of atomic reference line energies. Surf. Interface Anal. 6, 95–106 (1984).

    Google Scholar 

  52. 52.

    Samokhvalov, A., Nair, S., Duin, E. C. & Tatarchuk, B. J. Surface characterization of Ag/titania adsorbents. Appl. Surf. Sci. 256, 3647–3652 (2010).

    Google Scholar 

  53. 53.

    Fernández, A. & González-Elipe, A. In situ XPS study of the photoassisted reduction of noble-metal cations on TiO2. Appl. Surf. Sci. 69, 285–289 (1993).

    Google Scholar 

  54. 54.

    Parry, E. P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 2, 371–379 (1963).

    Google Scholar 

  55. 55.

    Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P. & Luis, F. Progress in chemical-looping combustion and reforming technologies. Prog. Energ. Combust. Sci. 38, 215–282 (2012).

    Google Scholar 

  56. 56.

    Bhavsar, S., Najera, M., Solunke, R. & Veser, G. Chemical looping: to combustion and beyond. Catal. Today 228, 96–105 (2014).

    Google Scholar 

  57. 57.

    Vorrias, I. et al. Calcium looping for CO2 capture from a lignite fired power plant. Fuel 113, 826–836 (2013).

    Google Scholar 

  58. 58.

    Galvita, V. V., Poelman, H. & Marin, G. B. Combined chemical looping for energy storage and conversion. J. Power Sources 286, 362–370 (2015).

    Google Scholar 

  59. 59.

    Buelens, L. C., Galvita, V. V., Poelman, H., Detavernier, C. & Marin, G. B. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354, 449–452 (2016).

    Google Scholar 

  60. 60.

    Zhang, J., Haribal, V. & Li, F. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme. Sci. Adv. 3, e1701184 (2017).

    Google Scholar 

Download references

Acknowledgements

We thank L. Burylo, P. Simon and M. Frère for help with X-ray diffraction and XPS measurements. X.Y. and D.H thank the Chinese scholarship council for providing stipends for their PhD studies in France. We thank Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Hauts-de-France Region and FEDER for supporting and partially funding this work. GENESIS is supported by the Région Haute-Normandie, Métropole Rouen Normandie, CNRS via LABEX EMC3 and French National Research Agency as a part of the programme 'Investissements d'avenir' with the reference ANR-11-EQPX-0020.

Author information

Affiliations

Authors

Contributions

X.Y., V.V.O. and A.Y.K. conceived the idea for this work. All authors contributed to the design of the experimental set-up and experimental procedures. X.Y. prepared the nanocomposite materials, collected the data and performed ex situ characterization. X.Y, D.W., V.L.Z. and V.V.O performed the infrared measurements. S.M. performed nanocomposite characterization using imaging techniques. V.L.Z., A.Y.K and X.Y. designed the capillary photoreactor and performed the high-conversion methane experiments. D.H. synthesized the silver salt of HPW and conducted additional experiments in order to address the reviewer comments. X.Y. and A.Y.K. wrote the draught, and all the authors worked on improving the manuscript.

Corresponding authors

Correspondence to Vitaly V. Ordomsky or Andrei Y. Khodakov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Table 1.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 5

Statistical source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zholobenko, V.L., Moldovan, S. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat Energy 5, 511–519 (2020). https://doi.org/10.1038/s41560-020-0616-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing