Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation


The carbon dioxide electroreduction reaction (CO2RR) provides ways to produce ethanol but its Faradaic efficiency could be further improved, especially in CO2RR studies reported at a total current density exceeding 10 mA cm−2. Here we report a class of catalysts that achieve an ethanol Faradaic efficiency of (52 ± 1)% and an ethanol cathodic energy efficiency of 31%. We exploit the fact that suppression of the deoxygenation of the intermediate HOCCH* to ethylene promotes ethanol production, and hence that confinement using capping layers having strong electron-donating ability on active catalysts promotes C–C coupling and increases the reaction energy of HOCCH* deoxygenation. Thus, we have developed an electrocatalyst with confined reaction volume by coating Cu catalysts with nitrogen-doped carbon. Spectroscopy suggests that the strong electron-donating ability and confinement of the nitrogen-doped carbon layers leads to the observed pronounced selectivity towards ethanol.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: DFT calculations.
Fig. 2: Structural and compositional analyses of the 34% N-C/Cu catalyst on PTFE.
Fig. 3: CO2RR performance comparisons.
Fig. 4: In situ Raman and XAS characterization.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper, Supplementary Information and Source Data files.


  1. 1.

    Jhong, H.-R., Ma, S. & Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2, 191–199 (2013).

    Article  Google Scholar 

  2. 2.

    Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry (eds Vayenas, C. G., White, R. E. & Gamboa-Aldeco, M. E.) Vol. 42, Ch. 3 (Springer, 2008).

  3. 3.

    Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  Google Scholar 

  4. 4.

    Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 19, 974–980 (2018).

    Article  Google Scholar 

  5. 5.

    Ren, R. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  Google Scholar 

  6. 6.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  Google Scholar 

  7. 7.

    Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  Google Scholar 

  8. 8.

    Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  Google Scholar 

  9. 9.

    Global Ethanol Market: Advancement In Production Technologies To Boost Market, Notes TMR (Transparency Market Research, 2018); www.transparencymarketresearch.com/pressrelease/ethanol-market.htm.

  10. 10.

    Lum, Y., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    Article  Google Scholar 

  11. 11.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  Google Scholar 

  12. 12.

    Hoang, T. T. H. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  Google Scholar 

  13. 13.

    Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  14. 14.

    Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    Article  Google Scholar 

  15. 15.

    Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    Article  Google Scholar 

  16. 16.

    Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  Google Scholar 

  17. 17.

    Li, H., Xiao, J., Fu, Q. & Bao, X. Confined catalysis under two-dimensional materials. Proc. Natl Acad. Sci. USA 114, 5930–5934 (2017).

    Article  Google Scholar 

  18. 18.

    Qiang, F. & Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 46, 1842–1874 (2017).

    Article  Google Scholar 

  19. 19.

    Zicovich-Wilson, C., Corma, A. & Viruela, P. Electronic confinement of molecules in microscopic pores. A new concept which contributes to the explanation of the catalytic activity of zeolites. J. Phys. Chem. 98, 10863–10870 (1994).

    Article  Google Scholar 

  20. 20.

    Yang, F., Deng, D., Pan, X., Fu, Q. & Bao, X. Understanding nano effects in catalysis. Natl Sci. Rev. 2, 183–201 (2015).

    Article  Google Scholar 

  21. 21.

    Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Article  Google Scholar 

  22. 22.

    Kumar, B. et al. Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction. Nat. Commun. 4, 2918 (2013).

    Article  Google Scholar 

  23. 23.

    Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  Google Scholar 

  24. 24.

    Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  Google Scholar 

  25. 25.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  Google Scholar 

  26. 26.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  Google Scholar 

  27. 27.

    Chernyshova, I., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    Article  Google Scholar 

  28. 28.

    Akemann, W. & Otto, A. Vibrational modes of CO adsorbed on disordered copper films. J. Raman Spectrosc. 22, 797–803 (1991).

    Article  Google Scholar 

  29. 29.

    Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  Google Scholar 

  30. 30.

    Sheppard, N. & Nguyen, T. T. in Advances in Infrared and Raman Spectroscopy (eds Clark, R. J. H. & Hester, R. E.) Vol. 5 (Heyden, 1978).

  31. 31.

    Fielicke, A., Gruene, P., Meijer, G. & Rayner, D. M. The adsorption of CO on transition metal clusters: a case study of cluster surface chemistry. Surf. Sci. 603, 1427–1433 (2009).

    Article  Google Scholar 

  32. 32.

    Sandberg, R. B., Montoya, J. H., Chan, K. & Nørskov, J. K. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016).

    Article  Google Scholar 

  33. 33.

    Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  Google Scholar 

  34. 34.

    Huan, T. N. et al. From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid. J. Mater. Chem. A 3, 3901–3907 (2015).

    Article  Google Scholar 

  35. 35.

    Liu, G., Li, X., Ganesan, P. & Popov, B. N. Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl. Catal. B 93, 156–165 (2009).

    Article  Google Scholar 

  36. 36.

    Li, J. et al. Unraveling the origin of visible light capture by core–shell TiO2 nanotubes. Chem. Mater. 28, 4467–4475 (2016).

    Article  Google Scholar 

  37. 37.

    Niwa, H. et al. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J. Power Sources 187, 93–97 (2009).

    Article  Google Scholar 

  38. 38.

    Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–84 (2017).

    Article  Google Scholar 

  39. 39.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  40. 40.

    Jan, I. Nika: software for two-dimensional data reduction. J. Appl. Crystallogr. 45, 324–328 (2012).

    Article  Google Scholar 

  41. 41.

    Urbain, F. et al. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized Earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 10, 2256–2266 (2017).

    Article  Google Scholar 

  42. 42.

    Baturina, O. A. et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 4, 3682–3695 (2014).

    Article  Google Scholar 

  43. 43.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  45. 45.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  46. 46.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  Google Scholar 

  47. 47.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  48. 48.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  49. 49.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  50. 50.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  51. 51.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  52. 52.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    Article  Google Scholar 

  53. 53.

    Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    Article  Google Scholar 

  54. 54.

    Alavi, A., Hu, P. J., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  Google Scholar 

  55. 55.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  Google Scholar 

  56. 56.

    Deringer, V. L. et al. Computational surface chemistry of tetrahedral amorphous carbon by combining machine learning and density functional theory. Chem. Mater. 30, 7438–7445 (2018).

    Article  Google Scholar 

  57. 57.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    Article  Google Scholar 

  58. 58.

    Burdyny, T. et al. Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5, 4031–4040 (2017).

    Article  Google Scholar 

  59. 59.

    Wiesenburg, D. A. & Guinasso, N. L. J. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Chem. Eng. Data 24, 356–360 (1979).

    Article  Google Scholar 

  60. 60.

    Linstrom, P. J. & Mallard, W. G. NIST Chemistry WebBook NIST Standard Reference Database Number 69 (NIST, 2018); https://doi.org/10.18434/T4D303.

  61. 61.

    Schumpe, A. & Weisenberger, S. Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J. 42, 298–300 (1996).

    Article  Google Scholar 

  62. 62.

    Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006).

    Article  Google Scholar 

  63. 63.

    Schulz, K. G., Riebesell, U., Rost, B., Thoms, S. & Zeebe, R. E. Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Mar. Chem. 100, 53–65 (2006).

    Article  Google Scholar 

  64. 64.

    Millero, F. J. & Rabindra, N. R. A chemical equilibrium model for the carbonate system in natural waters. Croat. Chem. Acta 70, 1–38 (1997).

    Google Scholar 

  65. 65.

    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    Article  Google Scholar 

  66. 66.

    Vanysek, P. CRC Handbook of Chemistry and Physics (CRC Press, 1993).

  67. 67.

    Raciti, D., Mao, M. & Wang, C. Mass transport modelling for the electroreduction of CO2 on Cu nanowires. Nanotechnology 29, 044001 (2017).

    Article  Google Scholar 

  68. 68.

    Sacco, A., Zeng, J., Bejtka, K. & Chiodoni, A. Modeling of gas bubble-induced mass transport in the electrochemical reduction of carbon dioxide on nanostructured electrodes. J. Catal. 372, 39–48 (2019).

    Article  Google Scholar 

  69. 69.

    Newman, J. & Thomas-Alyea, K. E. Electrochemical Systems (John Wiley & Sons, 2004).

  70. 70.

    Bernardi, D. M. & Verbrugge, M. W. Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE J. 37, 1151–1163 (1991).

    Article  Google Scholar 

  71. 71.

    Das, P. K., Li, X. & Liu, Z.-S. Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: beyond Bruggeman approximation. Appl. Energy 87, 2785–2796 (2010).

    Article  Google Scholar 

Download references


This work was supported by Suncor Energy, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the CIFAR Bio-Inspired Solar Energy programme. Synchrotron measurements were carried out at the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, and was supported by the US DOE under contract number DE-AC02-06CH11357, the Canadian Light Source and its funding partners, and the CMS beamline of the National Synchrotron Light Source II, a US DOE Office of the Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory. This research also used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract number DE-AC02-05CH1123, as well as the sources of the Canadian Light Source. The focused ion beam analyses and some of the TEM/STEM and SEM analyses were carried out at the CFI-funded Ontario Centre for the Characterization of Advanced Materials at the University of Toronto. STEM measurements and EELS mapping were performed at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is a user facility supported by the US DOE BES. M.C. is supported by the US DOE BES, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program. All DFT calculations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP) and Niagara supercomputer at the SciNet HPC Consortium. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada Ltd., Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, Ontario Research Fund - Research Excellence and the University of Toronto. We thank T. Wu, Y. Z. Finfrock, L. Ma and G. Sterbinsky for technical support at the 9BM beamline of the Advanced Photon Source. D.S. acknowledges the NSERC E. W. R. Steacie Memorial Fellowship. J.L. acknowledges the Banting Postdoctoral Fellowships Program. We thank M. Wei from the University of Toronto for discussions and help.

Author information




E.H.S. supervised the project. X.W. designed and carried out the experiments, analysed the data and wrote the paper. Z.W. carried out DFT simulations and wrote the corresponding section. X.W. and A.O. carried out the MEA measurements. D.-H.N., Y.-S.L., F.L., Y.L. and S.-F.H. performed synchrotron X-ray spectroscopy measurements. Z.C. and M.C. conducted the preparation and characterization of STEM/TEM ultrathin slices of catalyst. B.C., J.T., J.Y.H. and B.S. conducted TEM characterizations. Y.W. and J.T. performed part of the SEM characterizations. J.W., A.P. and P.T. carried out XPS measurements. A.R.K. and L.J.R. carried out the WAXS measurements and analysed the WAXS data. C.M. carried out the local species concentration modelling. C.M.G. and C.P.O. provided help with the MEA measurements. F.P.G.d.A., C.-T.D., Y.C.L., J.L., T.-T.Z., M.L., Y.M., A.X., B. Stephen, B. Sun, A.H.I., S.O.K. and D.S. assisted with the discussions. A.R.K. is a guest researcher. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

A patent application regarding confined electrocatalysis for CO2-to-ethanol is in preparation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–14 and Refs. 1–10.

Source data

Source Data Fig. 3

Source Data for Fig. 3a, b, c, and d

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z., García de Arquer, F.P. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat Energy 5, 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing