Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries


Lithium batteries with Si, Al or Bi microsized (>10 µm) particle anodes promise a high capacity, ease of production, low cost and low environmental impact, yet they suffer from fast degradation and a low Coulombic efficiency. Here we demonstrate that a rationally designed electrolyte (2.0 M LiPF6 in 1:1 v/v mixture of tetrahydrofuran and 2-methyltetrahydrofuran) enables 100 cycles of full cells that contain microsized Si, Al and Bi anodes with commercial LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes. Alloy anodes with areal capacities of more than 2.5 mAh cm−2 achieved >300 cycles with a high initial Coulombic efficiency of >90% and average Coulombic efficiency of >99.9%. These improvements are facilitated by the formation of a high-modulus LiF–organic bilayer interphase, in which LiF possesses a high interfacial energy with the alloy anode to accommodate plastic deformation of the lithiated alloy during cycling. This work provides a simple yet practical solution to current battery technology without any binder modification or special fabrication methods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Effect of the SEI and electrolyte properties on the alloy anode particles.
Fig. 2: Cycling performance of SiMP electrodes in half-cells.
Fig. 3: Electrochemical performance of AlMP electrodes in half-cells.
Fig. 4: SEI chemical composition.
Fig. 5: LiF distribution on Si.
Fig. 6: Morphology of Si anodes after cycling.
Fig. 7: Cycling of the SiMP, BiMP and AlMP//LFP full cells.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.


  1. 1.

    Li, J. & Dahn, J. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156–A161 (2007).

    Google Scholar 

  2. 2.

    Kasavajjula, U., Wang, C. & Appleby, A. J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

    Google Scholar 

  3. 3.

    Chen, Z., Chevrier, V., Christensen, L. & Dahn, J. Design of amorphous alloy electrodes for Li-ion batteries a big challenge. Electrochem. Solid State Lett. 7, A310–A314 (2004).

    Google Scholar 

  4. 4.

    Liu, W.-R. et al. Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive. J. Power Sources 140, 139–144 (2005).

    Google Scholar 

  5. 5.

    Obrovac, M. & Krause, L. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    Google Scholar 

  6. 6.

    Kim, H., Seo, M., Park, M. H. & Cho, J. A critical size of silicon nano‐anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 49, 2146–2149 (2010).

    Google Scholar 

  7. 7.

    Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    Google Scholar 

  8. 8.

    Chan, C. K. et al. in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (ed. Dusastre, V.) 187-191 (World Scientific, 2011).

  9. 9.

    Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H. & Cui, Y. Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–495 (2008).

    Google Scholar 

  10. 10.

    Li, S. et al. High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nat. Commun. 6, 7872 (2015).

    Google Scholar 

  11. 11.

    Yao, Y. et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 11, 2949–2954 (2011).

    Google Scholar 

  12. 12.

    Park, M.-H. et al. Silicon nanotube battery anodes. Nano Lett. 9, 3844–3847 (2009).

    Google Scholar 

  13. 13.

    Lu, Z. et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9, 2540–2547 (2015).

    Google Scholar 

  14. 14.

    Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    Google Scholar 

  15. 15.

    Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 8393 (2015).

    Google Scholar 

  16. 16.

    Zhang, C. J. et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019).

    Google Scholar 

  17. 17.

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    Google Scholar 

  18. 18.

    Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    Google Scholar 

  19. 19.

    Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).

    Google Scholar 

  20. 20.

    Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    Google Scholar 

  21. 21.

    Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    Google Scholar 

  22. 22.

    Peled, E. & Menkin, S. SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).

    Google Scholar 

  23. 23.

    Sina, M. et al. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance. Adv. Mater. Interfaces 3, 1600438 (2016).

    Google Scholar 

  24. 24.

    Michan, A. L. et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 138, 7918–7931 (2016).

    Google Scholar 

  25. 25.

    Jin, Y. et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018).

    Google Scholar 

  26. 26.

    Vogl, U. S. et al. The mechanism of SEI formation on a single crystal Si(100) electrode. J. Electrochem. Soc. 162, A603–A607 (2015).

    Google Scholar 

  27. 27.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Google Scholar 

  28. 28.

    Borodin, O. Challenges with prediction of battery electrolyte electrochemical stability window and guiding the electrode–electrolyte stabilization. Curr. Opin. Electrochem. 13, 86–93 (2019).

    Google Scholar 

  29. 29.

    Suo, L. et al. Advanced high‐voltage aqueous lithium‐ion battery enabled by ‘water‐in‐bisalt’ electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016).

    Google Scholar 

  30. 30.

    Zheng, J. et al. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16, 13229–13238 (2014).

    Google Scholar 

  31. 31.

    Hall, D. S., Self, J. & Dahn, J. R. Dielectric constants for quantum chemistry and Li-ion batteries: solvent blends of ethylene carbonate and ethyl methyl carbonate. J. Phys. Chem. C 119, 22322–22330 (2015).

    Google Scholar 

  32. 32.

    Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Google Scholar 

  33. 33.

    Ren, X. et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019).

    Google Scholar 

  34. 34.

    Chan, C. K., Ruffo, R., Hong, S. S. & Cui, Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009).

    Google Scholar 

  35. 35.

    Yoon, T., Chapman, N., Seo, D. M. & Lucht, B. L. Lithium salt effects on silicon electrode performance and solid electrolyte interphase (SEI) structure, role of solution structure on SEI formation. J. Electrochem. Soc. 164, A2082–A2088 (2017).

    Google Scholar 

  36. 36.

    Chang, X. et al. Enabling high performance lithium storage in aluminum: the double edged surface oxide. Nano Energy 41, 731–737 (2017).

    Google Scholar 

  37. 37.

    Ridgway, P. et al. Comparison of cycling performance of lithium ion cell anode graphites. J. Electrochem. Soc. 159, A520–A524 (2012).

    Google Scholar 

  38. 38.

    Wang, X. et al. High damage tolerance of electrochemically lithiated silicon. Nat. Commun. 6, 8417 (2015).

    Google Scholar 

  39. 39.

    Park, M. S. et al. A highly reversible lithium metal anode. Sci. Rep. 4, 3815 (2014).

    Google Scholar 

  40. 40.

    Boniface, M. et al. Nanoscale chemical evolution of silicon negative electrodes characterized by low-loss STEM-EELS. Nano Lett. 16, 7381–7388 (2016).

    Google Scholar 

  41. 41.

    Danet, J., Brousse, T., Rasim, K., Guyomard, D. & Moreau, P. Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries. Phys. Chem. Chem. Phys. 12, 220–226 (2010).

    Google Scholar 

  42. 42.

    Zhang, Q. et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano Lett. 16, 2011–2016 (2016).

    Google Scholar 

  43. 43.

    Bedrov, D., Borodin, O. & Hooper, J. B. Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): insight from atomistic molecular dynamics simulations. J. Phys. Chem. C 121, 16098–16109 (2017).

    Google Scholar 

  44. 44.

    Wang, X., Li, Y. & Meng, Y. S. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    Google Scholar 

  45. 45.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    MathSciNet  Google Scholar 

  46. 46.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    MathSciNet  Google Scholar 

  47. 47.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Google Scholar 

  48. 48.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  49. 49.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  50. 50.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  51. 51.

    Stournara, M. E. et al. Li segregation induces structure and strength changes at the amorphous Si/Cu interface. Nano Lett. 13, 4759–4768 (2013).

    Google Scholar 

  52. 52.

    Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    Google Scholar 

  53. 53.

    Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Ener. Env. Sci. 12, 780–794 (2019).

    Google Scholar 

  54. 54.

    Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).

    Google Scholar 

  55. 55.

    Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl) imide salts in ionic liquids. J. Phys. Chem. C. 122, 20108–20121 (2018).

    Google Scholar 

  56. 56.

    Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    Google Scholar 

  57. 57.

    Neumann, M. & Steinhauser, O. Computer simulation and the dielectric constant of polarizable polar systems. Chem. Phys. Lett. 106, 563–569 (1984).

    Google Scholar 

  58. 58.

    Giner, B., Gascón, I., Villares, A., Cea, P. & Lafuente, C. Densities and viscosities of the binary mixtures of tetrahydrofuran with isomeric chlorobutanes at 298.15 K and 313.15 K. J. Chem. Eng. Data 51, 1321–1325 (2006).

    Google Scholar 

  59. 59.

    Vallés, C., Pérez, E., Mainar, A. M., Santafé, J. & Domínguez, M. Excess enthalpy, density, speed of sound, and viscosity for 2-methyltetrahydrofuran + 1-butanol at (283.15, 298.15, and 313.15) K. J. Chem. Eng. Data 51, 1105–1109 (2006).

    Google Scholar 

  60. 60.

    Hayamizu, K., Aihara, Y., Arai, S. & Martinez, C. G. Pulse-gradient spin-echo H-1, Li-7, and F-19 NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2. J. Phys. Chem. B. 103, 519–524 (1999).

    Google Scholar 

  61. 61.

    Hatnes, W. M. & Lide, D. R. CRC Handbook of Chemistry and Physics 2012–2013 93rd edn (CRC, 2012).

  62. 62.

    Delsignore, M., Maaser, H. E. & Petrucci, S. Molecular relaxation of lithium salts in 2-methyltetrahydrofuran at 25° C. J. Phys. Chem. 88, 2405–2411 (1984).

    Google Scholar 

  63. 63.

    Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).

    Google Scholar 

  64. 64.

    Fry, A. J. Computational applications in organic electrochemistry. Curr. Opin. Electrochem. 2, 67–75 (2017).

    Google Scholar 

  65. 65.

    Jow, T. R., Xu, K., Borodin, O. & Ue, M. Electrolytes for Lithium and Lithium-Ion Batteries Vol. 58 (Springer, 2014).

  66. 66.

    Frisch, M. J. T. et al. Gaussain 09 (Gaussian Inc., 2016).

Download references


This project was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) through Battery500 Consortium under contract no. DE-EE0008202. Cryo-EM work was performed at the Center for Functional Nanomaterials, which is a US DOE Office of Science User Facility at Brookhaven National Laboratory, under Contract no. DE-SC0012704. Modelling work at the Army Research Laboratory (ARL) by O.B. was supported by ARL Enterprise for Multiscale Modeling. The authors acknowledge helpful discussions with M. Schroeder (ARL) and T. Pollard (ARL).

Author information




J.C., X.F. and Q.L. contributed equally to this work. J.C., X.F. and C.W. conceived the idea for the project. J.C., X.F. and Q.L. prepared the materials and performed the electrochemical experiments. O.B. and X.J. conducted the QC calculations and MD simulations. M.R.K. and H.H. conducted the electrochemical AFM measurements. S.H., D.S., Y.X. and C.W. performed the cryo-TEM measurements. H.Y. and E.G. obtained the LiF spatial distribution and EELS spectra. L.C. and C.Y. coated the electrodes. All the authors discussed the results, analysed the data and drafted the manuscript.

Corresponding authors

Correspondence to Oleg Borodin or Chunsheng Wang.

Ethics declarations

Competing interests

A US patent with the provisional application number 62/978637 has been filed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Figs. 1–41 and refs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Fan, X., Li, Q. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1

Download citation

Further reading