Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Benchmarking the performance of all-solid-state lithium batteries

Abstract

Increasing the specific energy, energy density, specific power, energy efficiency and energy retention of electrochemical storage devices are major incentives for the development of all-solid-state batteries. However, a general evaluation of all-solid-state battery performance is often difficult to derive from published reports, mostly due to the interdependence of performance measures, but also due to the lack of a basic reference system. Here, we present all-solid-state batteries reduced to the bare minimum of compounds, containing only a lithium metal anode, β-Li3PS4 solid electrolyte and Li(Ni0.6Co0.2Mn0.2)O2 cathode active material. We use this minimalistic system to benchmark the performance of all-solid-state batteries. In a Ragone-type graph, we compare literature data for thiophosphate-, oxide-, phosphate- and polymer-based all-solid-state batteries with our minimalistic cell. Using fundamental equations for key performance parameters, we identify research targets towards high energy, high power and practical all-solid-state batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ragone plots for cells cycled at different temperatures.
Fig. 2: Relationship between layer thicknesses and specific energies of analysed ASSBs.
Fig. 3: Cycling results of analysed ASSBs.
Fig. 4: The maximum allowed internal resistance and achievable specific energy for intercalation- and conversion-type cell systems.

Data availability

All data generated or analysed during this study are included in this Analysis and its Supplementary Information files.

References

  1. 1.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Google Scholar 

  2. 2.

    Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Article  Google Scholar 

  3. 3.

    Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Google Scholar 

  4. 4.

    Yu, S. et al. Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility. ACS Appl. Mater. Interfaces 10, 22264–22277 (2018).

    Article  Google Scholar 

  5. 5.

    Finsterbusch, M. et al. High capacity garnet-based all-solid-state lithium batteries: fabrication and 3D-microstructure resolved modeling. ACS Appl. Mater. Interfaces 10, 22329–22339 (2018).

    Article  Google Scholar 

  6. 6.

    Yao, X. et al. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 16, 7148–7154 (2016).

    Article  Google Scholar 

  7. 7.

    Hovington, P. et al. New lithium metal polymer solid state battery for an ultrahigh energy: nano C‑LiFePO4 versus nano Li1.2V3O8. Nano Lett. 15, 2671–2678 (2015).

    Article  Google Scholar 

  8. 8.

    Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    Article  Google Scholar 

  9. 9.

    Zhu, G.-L. et al. Fast charging lithium batteries: recent progress and future prospects. Small 15, 1805389 (2019).

    Article  Google Scholar 

  10. 10.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  Google Scholar 

  11. 11.

    Takeda, Y., Yamamoto, O. & Imanishi, N. Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry 84, 210–218 (2016).

    Article  Google Scholar 

  12. 12.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1–12 (2017).

    Article  Google Scholar 

  13. 13.

    Zhu, Y., He, X. & Mo, Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv. Sci. 4, 1–11 (2017).

    Google Scholar 

  14. 14.

    Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv. Energy Mater. 9, 1900626 (2019).

    Article  Google Scholar 

  15. 15.

    Nam, Y. J., Oh, D. Y., Jung, S. H. & Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    Article  Google Scholar 

  16. 16.

    Sakuda, A. et al. All-solid-state battery electrode sheets prepared by a slurry coating process. J. Electrochem. Soc. 164, A2474–A2478 (2017).

    Article  Google Scholar 

  17. 17.

    Ma, J., Chen, B., Wang, L. & Cui, G. Progress and prospect on failure mechanisms of solid-state lithium batteries. J. Power Sources 392, 94–115 (2018).

    Article  Google Scholar 

  18. 18.

    Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

    Article  Google Scholar 

  19. 19.

    Whiteley, J., Woo, J. H., Hu, E., Nam, K. & Lee, S. Empowering the lithium metal battery through a silicon-based superionic conductor. J. Electrochem. Soc. 161, A1812–A1817 (2014).

    Article  Google Scholar 

  20. 20.

    Zhang, Z. et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl. Mater. Interfaces 10, 2556–2565 (2018).

    Article  Google Scholar 

  21. 21.

    Woo, J. et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. J. Electrochem. Soc. 159, A1120–A1124 (2012).

    Article  Google Scholar 

  22. 22.

    Xie, D. et al. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 389, 140–147 (2018).

    Article  Google Scholar 

  23. 23.

    Ulissi, U., Agostini, M., Ito, S., Aihara, Y. & Hassoun, J. All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. Solid State Ionics 296, 13–17 (2016).

    Article  Google Scholar 

  24. 24.

    Choi, S.-J. et al. LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 31404–31412 (2018).

    Article  Google Scholar 

  25. 25.

    Yamamoto, M., Terauchi, Y., Sakuda, A. & Takahashi, M. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 8, 1212 (2018).

    Article  Google Scholar 

  26. 26.

    Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).

    Article  Google Scholar 

  27. 27.

    Ito, S. et al. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte. J. Power Sources 248, 943–950 (2014).

    Article  Google Scholar 

  28. 28.

    Kim, D. et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

    Article  Google Scholar 

  29. 29.

    Kraft, M. A. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1−xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018).

    Article  Google Scholar 

  30. 30.

    Yamada, T. et al. All solid-state lithium–sulfur battery using a glass-type P2S5–Li2S electrolyte: benefits on anode kinetics. J. Electrochem. Soc. 162, A646–A651 (2015).

    Article  Google Scholar 

  31. 31.

    Zhang, Q. et al. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate. J. Mater. Chem. A 6, 12098–12105 (2018).

    Article  Google Scholar 

  32. 32.

    Chen, R. et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach. ACS Appl. Mater. Interfaces 9, 9654–9661 (2017).

    Article  Google Scholar 

  33. 33.

    Park, M., Jung, Y. & Kim, D. Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ionics 315, 65–70 (2018).

    Article  Google Scholar 

  34. 34.

    Wakayama, H., Yonekura, H. & Kawai, Y. Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chem. Mater. 28, 4453–4459 (2016).

    Article  Google Scholar 

  35. 35.

    Ates, T., Keller, M., Kulisch, J., Adermann, T. & Passerini, S. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Mater. 18, 31261–31264 (2018).

    Google Scholar 

  36. 36.

    Porcarelli, L. et al. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. J. Power Sources 364, 191–199 (2017).

    Article  Google Scholar 

  37. 37.

    Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    Article  Google Scholar 

  38. 38.

    Kim, J., Hong, Y., Ryu, K. S., Kim, M. G. & Cho, J. Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water. Electrochem. Solid-State Lett. 9, A19–A23 (2006).

    Article  Google Scholar 

  39. 39.

    Visbal, H. et al. The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance. J. Power Sources 269, 396–402 (2014).

    Article  Google Scholar 

  40. 40.

    Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β‑Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013).

    Article  Google Scholar 

  41. 41.

    Phuc, N. H. H., Morikawa, K., Mitsuhiro, T., Muto, H. & Matsuda, A. Synthesis of plate-like Li3PS4 solid electrolyte via liquid-phase shaking for all-solid-state lithium batteries. Solid State Ionics 23, 2061–2067 (2017).

    Google Scholar 

  42. 42.

    Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    Article  Google Scholar 

  43. 43.

    Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).

    Article  Google Scholar 

  44. 44.

    Ragone, D. V. Review of Battery Systems for Electrically Powered Vehicles SAE Technical Paper 680453 (SAE, 1968).

  45. 45.

    van Noorden, R. A better battery. Nature 507, 26–28 (2014).

    Article  Google Scholar 

  46. 46.

    Sanyo Energy. Panasonic NCR18650B Specification (2012); https://www.batteryspace.com/prod-specs/NCR18650B.pdf.

  47. 47.

    Keller, M., Varzi, A. & Passerini, S. Hybrid electrolytes for lithium metal batteries. J. Power Sources 392, 206–225 (2018).

    Article  Google Scholar 

  48. 48.

    Fu, K. (K). Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017)..

  49. 49.

    Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018).

    Article  Google Scholar 

  50. 50.

    Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1–11 (2018).

    Article  Google Scholar 

  51. 51.

    Sakuda, A., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011).

    Article  Google Scholar 

  52. 52.

    Hippauf, F. et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Mater. 21, 390–398 (2019).

    Article  Google Scholar 

  53. 53.

    Krauskopf, T. et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule 3, 2030–2049 (2019).

    Article  Google Scholar 

  54. 54.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  Google Scholar 

  55. 55.

    Yoon, K., Kim, J.-J., Seong, W. M., Lee, M. H. & Kang, K. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci. Rep. 8, 8066 (2018).

    Article  Google Scholar 

  56. 56.

    Zhang, W. et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017).

    Article  Google Scholar 

  57. 57.

    Hakari, T., Sato, Y., Yoshimi, S., Hayashi, A. & Tatsumisago, M. Favorable carbon conductive additives in Li3PS4 composite positive electrode prepared by ball-milling for all-solid-state lithium batteries. J. Electrochem. Soc. 164, A2804–A2811 (2017).

    Article  Google Scholar 

  58. 58.

    Huang, Z. et al. Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries. RSC Adv. 5, 88773–88779 (2015).

    Article  Google Scholar 

  59. 59.

    Homma, K. et al. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 182, 53–58 (2011).

    Article  Google Scholar 

  60. 60.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  Google Scholar 

  61. 61.

    Schichlein, H., Müller, A. C., Voigts, M., Krügel, A. & Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 32, 875–882 (2002).

    Article  Google Scholar 

  62. 62.

    Ivers-Tiffée, E. & Weber, A. Evaluation of electrochemical impedance spectra by the distribution of relaxation times. J. Ceram. Soc. Jpn 125, 193–201 (2017).

    Article  Google Scholar 

  63. 63.

    Schönleber, M. & Ivers-Tiffée, E. Approximability of impedance spectra by RC elements and implications for impedance analysis. Electrochem. Commun. 58, 15–19 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Federal Ministry of Education and Research (BMBF) within the FELIZIA project (grant nos. 03XP0026G and 03XP0026J) and the FESTBATT consortium (grant no. 03XP0177A) is acknowledged. We acknowledge discussions with T. Ates, S. Culver, C. Dietrich, M. Keller, P. Minnmann, C. Pompe, N. Riphaus, J. Sann and M. Weiß.

Author information

Affiliations

Authors

Contributions

S.R., D.A.W., W.G.Z., F.H.R. and J.J. designed the experimental work. S.R. and O.K. conducted the experimental work. R.K. carried out and analysed the XPS measurements. P.B., A.W. and E.I.-T. carried out the DRT analysis. T.A. and J.K. provided the solid electrolyte and cathode active material. S.R. and F.H.R. analysed the literature data and cell performance prediction. S.R., F.H.R. and J.J. wrote the manuscript. F.H.R. and J.J. directed this work. All authors commented on the manuscript.

Corresponding authors

Correspondence to Felix H. Richter or Jürgen Janek.

Ethics declarations

Competing interests

D.A.W. is now employed by Volkswagen AG and R.K. is now employed by BMW group.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Figs. 1–19 discussion and refs. 1–9.

Supplementary Data 1

Calculation table to evaluate lithium SSB performance from experimental data.

Supplementary Data 2

Prediction of performance characteristics of lithium solid-state batteries.

Supplementary Data 3

Prediction of the maximum allowed internal resistance and the required current density for intercalation- and conversion-type cell systems versus Li+/Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Randau, S., Weber, D.A., Kötz, O. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing