Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Better seasonal forecasts for the renewable energy industry

An Author Correction to this article was published on 25 February 2020

This article has been updated

Anomalous seasons such as extremely cold winters or low-wind summers can seriously disrupt renewable energy productivity and reliability. Better seasonal forecasts providing more accurate information tailored to stakeholder needs can help the renewable energy industry prepare for such extremes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Decision tree explaining user choices based on skill scores and probability distribution functions.
Fig. 2: Final and power futures settlement prices in Germany and France for week 3 in 2017, a severe cold spell period.

Change history


  1. Cronin, J., Anandarajah, G. & Dessens, O. Clim. Change 151, 79–93 (2018).

    Article  Google Scholar 

  2. Bessec, M. & Fouquau, J. Energy Econ. 30, 2705–2721 (2008).

    Article  Google Scholar 

  3. Russo, S., Sillmann, J. & Fischer, E. M. Environ. Res. Lett. 10, 124003 (2015).

    Article  Google Scholar 

  4. DE Energy. Quarterly Report on European Electricity Markets (European Commission, 2015).

  5. Sailor, D. J. Energy 26, 645–657 (2001).

    Article  Google Scholar 

  6. Staffell, I. & Pfenninger, S. Energy 145, 65–78 (2018).

    Article  Google Scholar 

  7. Lledó, L., Bellprat, O., Doblas‐Reyes, F. J. & Soret, A. J. Geophys. Res. Atmospheres 123, 4837–4849 (2018).

    Article  Google Scholar 

  8. Shu, J., Qu, J. J., Motha, R., Xu, J. C. & Dong, D. F. IOP Conf. Ser. Earth Environ. Sci. 163, 012126 (2018).

    Article  Google Scholar 

  9. Kumar, A. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (Edenhofer, O. et al. (eds)) Ch. 5 (Cambridge University Press, 2011).

  10. Santer, B. D. et al. Science 361, eaas8806 (2018).

    Article  Google Scholar 

  11. Marelle, L., Myhre, G., Hodnebrog, Ø., Sillmann, J. & Samset, B. H. Geophys. Res. Lett. 45, 11, 352–11,360 (2018).

    Article  Google Scholar 

  12. Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. J. Geophys. Res. Atmospheres 118, 2473–2493 (2013).

    Article  Google Scholar 

  13. Pfleiderer, P., Schleussner, C.-F., Kornhuber, K. & Coumou, D. Nat. Clim. Change 9, 666–671 (2019).

    Article  Google Scholar 

  14. Beniston, M. et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 81, 71–95 (2007).

    Article  Google Scholar 

  15. Soret, A. et al. Sub-seasonal to seasonal climate predictions for wind energy forecasting. J. Phys. Conf. Ser. 1222, 012009 (2019).

    Article  Google Scholar 

  16. Lledó, L., Torralba, V., Soret, A., Ramon, J. & Doblas-Reyes, F. J. Renew. Energy 143, 91–100 (2019).

    Article  Google Scholar 

  17. Dutton, J. A., James, R. P. & Ross, J. D. in Weather & Climate Services for the Energy Industry (ed Troccoli, A.) 161–177 (Springer, 2018).

  18. White, C. J. et al. Meteorol. Appl. 24, 315–325 (2017).

    Article  Google Scholar 

  19. Clark, R. T., Bett, P. E., Thornton, H. E. & Scaife, A. A. Environ. Res. Lett. 12, 04002 (2017).

    Google Scholar 

  20. Vitart, F. & Robertson, A. W. Npj Clim. Atmospheric Sci. 1, 3 (2018).

    Article  Google Scholar 

  21. Tippett, M. K. Npj Clim. Atmospheric Sci. 1, 1–2 (2018).

    Article  Google Scholar 

  22. Vigo, I., Orlov, A., Hernández, K., Aaheim, H.-A. & Manrique-Suñén, A. Economic Gains From Using S2S Forecasts in Energy Producers’ Decision-Making By Analysing Relevant Case Studies Deliverable D2.2 of the S2S4E project (S2S4E, 2019).

  23. Terrado, M. et al. Bull. Am. Meteorol. Soc. 100, 1909–1921 (2019).

    Article  Google Scholar 

  24. Mariotti, A., Ruti, P. M. & Rixen, M. Npj Clim. Atmospheric Sci. 1, 4 (2018).

    Article  Google Scholar 

  25. Market Data (European Energy Exchange, 2017);

Download references


The authors acknowledge funding from the EU Horizon 2020 project “Sub-seasonal to seasonal climate forecasting for energy (S2S4E)” (GA776787).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jana Sillmann.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A., Sillmann, J. & Vigo, I. Better seasonal forecasts for the renewable energy industry. Nat Energy 5, 108–110 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing