Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global assessment of extreme wind speeds for wind energy applications


Cost-effective expansion of the wind energy industry benefits from robust estimates of wind resource and operating conditions. Extreme design loads contribute to wind turbine selection and cost, and are determined in part by the fifty year return period sustained wind speed (U50). Here we derive a global, homogenized and geospatially explicit digital atlas of U50 and associated confidence intervals based on ERA5 reanalysis output at wind turbine hub heights. U50 estimates derived using ERA5 output and four different methods are shown to lie within an average of 9–13% of those from point measurements. The reference wind speed (Uref) derived using five times the mean wind speed as specified in the wind turbine design standards is generally a conservative estimate of U50. Particularly after application of additional safety factors, this may result in over-engineering of wind turbines and excess capital expenditures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Installed capacity of wind turbines by country as of the end of 2019.
Fig. 2: Extreme sustained wind speed estimates (m s−1) at 100 m a.g.l. in each ERA5 grid cell computed using hourly output during 1979–2018.
Fig. 3: Divergence between Uref and U50 estimates.
Fig. 4: Uref and U50 for Weibull-distributed wind speeds.
Fig. 5: Scatterplots of the median and 10th to 90th percentile U50 or Uref estimates from the different approaches.
Fig. 6: Evaluation of Uref and U50 from ERA5 output relative to observations.
Fig. 7: Evaluation of the stationarity of U50 estimates.

Data availability

ERA5 data are available from Netcdf files containing the digital atlas are available for download from ZENODO ( An Excel spreadsheet containing U50 estimates from in situ observations is given as Supplementary Data 1.

Code availability

Matlab code used to compute Uref and U50 estimates can be downloaded from ZENODO at


  1. 1.

    Global Wind Report 2019 (Global Wind Energy Council, 2020);

  2. 2.

    Kusiak, A. Share data on wind energy: giving researchers access to information on turbine performance would allow wind farms to be optimized through data mining. Nature 529, 19–22 (2016).

    Google Scholar 

  3. 3.

    Pryor, S. C., Shepherd, T. J. & Barthelmie, R. J. Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Sci. 3, 651–665 (2018).

    Google Scholar 

  4. 4.

    Veers, P. et al. Grand challenges in the science of wind energy. Science 366, eaau2027 (2019).

    Google Scholar 

  5. 5.

    Dörenkämper, M. et al. The making of the New European Wind Atlas – part 2: production and evaluation. Geosci. Model Dev. 13, 5079–5102 (2020).

    Google Scholar 

  6. 6.

    Hahmann, A. N. et al. The making of the New European Wind Atlas – part 1: model sensitivity. Geosci. Model Dev. 13, 5053–5078 (2020).

    Google Scholar 

  7. 7.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  8. 8.

    IEC 61400-1 Edition 4.0 2019-02 Wind Turbines - Part 1: Design Requirements (International Electrotechnical Commission, 2019).

  9. 9.

    Burton, T., Jenkins, N., Sharpe, D. & Bossanyi, E. Wind Energy Handbook 2nd edn (John Wiley & Sons, 2011).

  10. 10.

    IEC 61400-3-1:2019 Wind Energy Generation Systems - Part 3-1: Design Requirements for Fixed Offshore Wind Turbines 149 (International Electrotechnical Commission, 2019).

  11. 11.

    Hamilton, S. D., Millstein, D., Bolinger, M., Wiser, R. & Jeong, S. How does wind project performance change with age in the United States? Joule 4, 1004–1020 (2020).

    Google Scholar 

  12. 12.

    Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U. & Melero, J. J. Lifetime extension of onshore wind turbines: a review covering Germany, Spain, Denmark, and the UK. Renew. Sustain. Energy Rev. 82, 1261–1271 (2018).

    Google Scholar 

  13. 13.

    Wiser, R. H. & Bolinger, M. Benchmarking Anticipated Wind Project Lifetimes: Results from a Survey of US Wind Industry Professionals. (Berkeley Lab, Electricity Markets and Policy Group, 2019);

  14. 14.

    Junginger, M., Hittinger, E., Williams, E. & Wiser, R. in Technological Learning in the Transition to a Low-Carbon Energy System (eds Junginger, M. & Louwen, A.) 87–102 (Elsevier, 2020).

  15. 15.

    Zhang, D. et al. Economic and sustainability promises of wind energy considering the impacts of climate change and vulnerabilities to extreme conditions. Electr. J. 32, 7–12 (2019).

    Google Scholar 

  16. 16.

    Steffen, B. The importance of project finance for renewable energy projects. Energy Econ. 69, 280–294 (2018).

    Google Scholar 

  17. 17.

    Rohrig, K. et al. Powering the 21st century by wind energy—options, facts, figures. Appl. Phys. Rev. 6, 031303 (2019).

    Google Scholar 

  18. 18.

    Pryor, S. C., Conrick, R., Miller, C., Tytell, J. & Barthelmie, R. J. Intense and extreme wind speeds observed by anemometer and seismic networks: an eastern US case study. J. Appl. Meteorol. Climatol. 53, 2417–2429 (2014).

    Google Scholar 

  19. 19.

    Peterka, J. A. Improved extreme wind prediction for the United States. J. Wind Eng. Ind. Aerodyn. 41, 533–541 (1992).

    Google Scholar 

  20. 20.

    Vickery, P. J. et al. Ultimate wind load design gust wind speeds in the United States for use in ASCE-7. J. Struct. Eng. ASCE 136, 613–625 (2010).

    Google Scholar 

  21. 21.

    Kalverla, P. C., Holtslag, A. A. M., Ronda, R. J. & Steeneveld, G. J. Quality of wind characteristics in recent wind atlases over the North Sea. Q. J. R. Meteorol. Soc. 146, 1498–1515 (2020).

    Google Scholar 

  22. 22.

    Olauson, J. ERA5: the new champion of wind power modelling? Renew. Energy 126, 322–331 (2018).

    Google Scholar 

  23. 23.

    Kalverla, P. C., Duncan, J. B. Jr, Steeneveld, G. J. & Holtslag, A. A. M. Low-level jets over the North Sea based on ERA5 and observations: together they do better. Wind Energy Sci. 4, 193–209 (2019).

    Google Scholar 

  24. 24.

    Pryor, S. C., Shepherd, T. J., Bukovsky, M. & Barthelmie, R. J. Assessing the stability of wind resource and operating conditions. J. Phys. Conf. Ser. (2020).

  25. 25.

    Wind Powers America: Annual Report 2019 148 (American Wind Energy Association, 2020);

  26. 26.

    Hand, M. M. IEA Wind TCP Task 26‒Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, Sweden, the European Union, and the United States: 2008‒2016 NREL/TP-6A20-71844, 104 (National Renewable Energy Laboratory, 2018);

  27. 27.

    Pryor, S. C. et al. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios. Clim. Dyn. 38, 189–208 (2012).

    Google Scholar 

  28. 28.

    Vose, R. S. et al. Monitoring and understanding changes in extremes: extratropical storms, winds, and waves. Bull. Am. Meteorol. Soc. 95, 377–386 (2014).

    Google Scholar 

  29. 29.

    Hodges, K. I., Lee, R. W. & Bengtsson, L. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Clim. 24, 4888–4906 (2011).

    Google Scholar 

  30. 30.

    Manganello, J. V. et al. Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J. Clim. 25, 3867–3893 (2012).

    Google Scholar 

  31. 31.

    Pryor, S. C. et al. Wind speed trends over the contiguous United States. J. Geophys. Res. Atmos. 114, D14105 (2009).

    Google Scholar 

  32. 32.

    Cook, N. J., Harris, R. I. & Whiting, R. Extreme wind speeds in mixed climates revisited. J. Wind Eng. Ind. Aerodyn. 91, 403–422 (2003).

    Google Scholar 

  33. 33.

    Camargo, S. J. & Wing, A. A. Tropical cyclones in climate models. Wiley Interdiscip. Rev. Clim. Change 7, 211–237 (2016).

    Google Scholar 

  34. 34.

    Kumar, D., Mishra, V. & Ganguly, A. R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 45, 441–453 (2015).

    Google Scholar 

  35. 35.

    Bastine, D., Larsen, X., Witha, B., Dorenkamper, M. & Gottschall, J. Extreme winds in the New European Wind Atlas. J. Phys. Conf. Ser. 1102, 012006 (2018).

    Google Scholar 

  36. 36.

    Larsén, X. G. & Kruger, A. Application of the spectral correction method to reanalysis data in South Africa. J. Wind Eng. Ind. Aerodyn. 133, 110–122 (2014).

    Google Scholar 

  37. 37.

    Larsen, X. G. & Mann, J. The effects of disjunct sampling and averaging time on maximum mean wind speeds. J. Wind Eng. Ind. Aerodyn. 94, 581–602 (2006).

    Google Scholar 

  38. 38.

    Pryor, S. C., Letson, F. W. & Barthelmie, R. J. Variability in wind energy generation across the contiguous USA. J. Appl. Meteorol. Climatol. 59, 2021–2039 (2020).

    Google Scholar 

  39. 39.

    Malakar, P., Kesarkar, A., Bhate, J., Singh, V. & Deshamukhya, A. Comparison of reanalysis data sets to comprehend the evolution of tropical cyclones over North Indian Ocean. Earth Space Sci. 7, e2019EA000978 (2020).

    Google Scholar 

  40. 40.

    Tarp-Johansen, N. J. & Clausen, N.-E. Design of Wind Turbines in Typhoon Area: a First Study of Structural Safety of Wind Turbines in Typhoon rone Areas 22 (EC-ASEAN Energy Facility, Risoe National Laboratory, 2006);

  41. 41.

    Schreck, S., Lundquist, J. & Shaw, W. J. US Department of Energy Workshop Report: Research Needs for Wind Resource Characterization Report no. NREL/TP-500-43521 (National Renewable Energy Lab, 2008);

  42. 42.

    Simiu, E. & Yeo, D. Wind Effects on Structures: Modern Structural Design for Wind (John Wiley & Sons, 2019).

  43. 43.

    Letson, F., Pryor, S. C., Barthelmie, R. J. & Hu, W. Observed gust wind speeds in the coterminous United States, and their relationship to local and regional drivers. J. Wind Eng. Ind. Aerodyn. 173, 199–209 (2018).

    Google Scholar 

  44. 44.

    Pintar, A. L., Simiu, E., Lombardo, F. T. & Levitan, M. L. Maps of Non-hurricane Non-tornadic Wind Speeds With Specified Mean Recurrence Intervals for the Contiguous United States Using a Two-Dimensional Poisson Process Extreme Value Model and Local Regression Special Publication 500-301 (National Institute of Standards and Technology, 2015);

  45. 45.

    Skamarock, W. C. Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Weather Rev. 132, 3019–3032 (2004).

    Google Scholar 

  46. 46.

    Larsén, X. G., Larsen, S. E. & Petersen, E. L. Full-scale spectrum of boundary-layer winds. Bound. Layer Meteorol. 159, 349–371 (2016).

    Google Scholar 

  47. 47.

    Offshore Wind in Europe: Key Trends and Statistics 2018 40 (Wind Europe, 2019);

  48. 48.

    Justus, C. G., Hargraves, W. R. & Yalcin, A. Nationwide assessment of potential power output from wind-powered generators. J. Appl. Meteorol. 15, 673–678 (1976).

    Google Scholar 

  49. 49.

    Pryor, S. C., Nielsen, M., Barthelmie, R. J. & Mann, J. Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: quantifying uncertainties associated with sampling strategy and distribution fitting methods. J. Appl. Meteorol. 43, 739–750 (2004).

    Google Scholar 

  50. 50.

    Mann, J., Kristensen, L. & Jensen, N. O. in Bridge Aerodynamics (eds Larsen, A. & Esdahl, S.) 49–56 (Balkema, 1998).

  51. 51.

    Wilks, D. S. Statistical Methods in the Atmospheric Sciences Vol. 100 (Academic Press, 2011).

  52. 52.

    Abild, J., Mortensen, N. G. & Landberg, L. Application of the Wind Atlas method to extreme wind speed data. J. Wind Eng. Ind. Aerodyn. 421, 473–484 (1992).

    Google Scholar 

  53. 53.

    Gringorten, I. I. A plotting rule for extreme probability paper. J. Geophys. Res. 68, 813–814 (1963).

    Google Scholar 

  54. 54.

    Bonamente, M. Statistics and Analysis of Scientific Data 2nd edn (Springer, 2017).

  55. 55.

    Lawrence, A. Probability in Physics: an Introductory Guide (Springer, 2019).

  56. 56.

    Hazelton, M. L. in International Encyclopedia of Statistical Science (ed. Lovric, M.) 816–817 (Springer, 2011).

  57. 57.

    Young, I., Vinoth, J., Zieger, S. & Babanin, A. V. Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res. Oceans 117, C00J06 (2012).

    Google Scholar 

  58. 58.

    Vinoth, J. & Young, I. Global estimates of extreme wind speed and wave height. J. Clim. 24, 1647–1665 (2011).

    Google Scholar 

  59. 59.

    Lombardo, F. T. Improved extreme wind speed estimation for wind engineering applications. J. Wind Eng. Ind. Aerodyn. 104–106, 278–284 (2012).

    Google Scholar 

  60. 60.

    Simiu, E., Wilcox, R., Sadek, F. & Filliben, J. J. Wind speeds in ASCE 7 standard peak-gust map: assessment. J. Struct. Eng. ASCE 129, 427–439 (2003).

    Google Scholar 

  61. 61.

    Harper, B. A., Kepert, J. D. & Ginger, J. D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions Report no. WMO-TD-1555 (World Meteorological Organization, 2010);

  62. 62.

    Cook, N. J. Towards better estimation of extreme winds. J. Wind Eng. Ind. Aerodyn. 9, 295–323 (1982).

    Google Scholar 

  63. 63.

    Dukes, M. D. G. & Palutikof, J. P. Estimation of extreme wind speeds with very long return periods. J. Appl. Meteorol. 34, 1950–1961 (1995).

    Google Scholar 

  64. 64.

    Gatey, D. A. & Miller, C. A. An investigation into 50-year return period wind speed differences for Europe. J. Wind Eng. Ind. Aerodyn. 95, 1040–1052 (2007).

    Google Scholar 

  65. 65.

    Wind Energy in Europe in 2019: Trends and Statistics 25 (Wind Europe, 2020);

Download references


This work is supported by the US Department of Energy (DE-SC0016438 and DE-SC0016605). The research used computing resources from the National Science Foundation: Extreme Science and Engineering Discovery Environment (allocation award to S.C.P. is TG-ATM170024). We gratefully acknowledge the European Center for Medium Range Weather Forecasts staff who generated and support dissemination of the ERA5 data set, and the comments from four external reviewers.

Author information




S.C.P. and R.J.B. jointly derived the concept for the research and obtained funding for the research. S.C.P. acquired the computational resources and developed and applied the research methodology and generated all figures. The authors jointly wrote the manuscript.

Corresponding author

Correspondence to Sara C. Pryor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Andrew Clifton, Julia Gottschall, Xiaoli Guo Larsén and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Seventy-three observationally derived estimates of extreme wind speeds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pryor, S.C., Barthelmie, R.J. A global assessment of extreme wind speeds for wind energy applications. Nat Energy 6, 268–276 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing