Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Processing thin but robust electrolytes for solid-state batteries

Abstract

The widespread adoption of high-energy-density solid-state batteries (SSBs) requires cost-effective processing and the integration of solid electrolytes of about the same thickness as the polymer-membrane separators found in conventional lithium-ion batteries. In this Review, we critically discuss the current status of research on SSB processing as well as recent cost calculations, and compare SSB oxide electrolyte material and processing options in terms of performance parameters for thick versus thin ceramics. We identify as critical for future SSB design the need to capture the thermal processing budget and the stability of the phase of interest for oxide solid electrolytes, namely lithium phosphorus oxynitride, sodium superionic conductors, perovskites and garnets, in addition to the classic plots of Arrhenius lithium transport and the electrochemical stability window. Transitioning to SSB oxide electrolyte films with thicknesses close to the range for lithium-ion battery separators could provide ample opportunities for low-temperature ceramic manufacture and potential cost reduction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cost and design considerations towards a Li metal-based SSB.
Fig. 2: SSB architectures and practical processing temperature window of different composite cathode/electrolyte assemblies.
Fig. 3: Properties of diverse oxide solid electrolytes.
Fig. 4: Ionic conductivity of oxide solid electrolytes for different processing routes.
Fig. 5: Overview of the different lithiation strategies available.

References

  1. 1.

    Trahey, L. et al. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl Acad. Sci. USA 117, 12550–12557 (2020). This work draws from a historical perspective the current challenges in energy storage in a broader context.

    Google Scholar 

  2. 2.

    Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1, 229–243 (2017).

    Google Scholar 

  3. 3.

    USABC Goals for Advanced High-Performance Batteries for Electric Vehicle (EV) Applications (United States Council for Automotive Reserach LLC, 2019); https://www.uscar.org/guest/article_view.php?articles_id=85

  4. 4.

    US Department of Energy Batteries energy.gov https://www.energy.gov/eere/vehicles/batteries (accessed 9 July 2020).

  5. 5.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018). This work highlights the importance of lithium metal anodes for enabling high-energy batteries at low cost from a mass-manufacturing perspective.

    Google Scholar 

  6. 6.

    Kim, K. J., Balaish, M., Wadaguchi, M., Kong, L. & Rupp, J. L. M. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater. 11, 2002689 (2021).

    Google Scholar 

  7. 7.

    Wang, C. et al. A general method to synthesize and sinter bulk ceramics in seconds. Science 526, 521–526 (2020). This work provides insights of a novel methodology to sinter bulk ceramics at ultrahigh temperature during very short times succesfully.

    Google Scholar 

  8. 8.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Google Scholar 

  9. 9.

    Zhao, Q., Stalin, S., Zhao, C. Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). This work brings the advantages and challenges linked to several solid-state electrolyte chemistries to the foreforent, highlithing current bottlenecks in the field.

    Google Scholar 

  10. 10.

    Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  11. 11.

    Wu, X. et al. Electrolyte for lithium protection: from liquid to solid. Green. Energy Environ. 4, 360–374 (2019).

    Google Scholar 

  12. 12.

    Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Google Scholar 

  13. 13.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Google Scholar 

  14. 14.

    Schnell, J. et al. Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy Environ. Sci. 12, 1818–1833 (2019).

    Google Scholar 

  15. 15.

    Schnell, J., Knörzer, H., Imbsweiler, A. J. & Reinhart, G. Solid versus liquid—a bottom-up calculation model to analyze the manufacturing cost of future high-energy batteries. Energy Technol. 8, 1901237 (2020). This work provides in-depth cost estimations of various SSB cell designs through a detailed model of the full production chain, providing hints about the need to decrease production cost to achieve competitive SSB products.

    Google Scholar 

  16. 16.

    Ping, W. et al. Printable, high-performance solid-state electrolyte films. Sci. Adv. 6, eabc8641 (2020).

    Google Scholar 

  17. 17.

    Alexander, G. V. et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J. Power Sources 396, 764–773 (2018).

    Google Scholar 

  18. 18.

    Tsai, C. L. et al. A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes. Sustain. Energy Fuels 3, 280–291 (2019).

    Google Scholar 

  19. 19.

    Ohta, S. et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J. Power Sources 265, 40–44 (2014).

    Google Scholar 

  20. 20.

    Han, F. et al. Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018).

    Google Scholar 

  21. 21.

    Ohta, S. et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013).

    Google Scholar 

  22. 22.

    Kotobuki, M. et al. A novel structure of ceramics electrolyte for future lithium battery. J. Power Sources 196, 9815–9819 (2011).

    Google Scholar 

  23. 23.

    Kim, K. J. & Rupp, J. L. M. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state batteries. Energy Environ. Sci. 13, 4930–4945 (2020).

    Google Scholar 

  24. 24.

    Ren, Y., Liu, T., Shen, Y., Lin, Y. & Nan, C.-W. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J. Mater. 2, 256–264 (2016).

    Google Scholar 

  25. 25.

    Miara, L. et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Interfaces 8, 26842–26850 (2016).

    Google Scholar 

  26. 26.

    Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Google Scholar 

  27. 27.

    Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Google Scholar 

  28. 28.

    Wang, B., Kwak, B. S., Sales, B. C. & Bates, J. B. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non Cryst. Solids 183, 297–306 (1995).

    Google Scholar 

  29. 29.

    Yu, X., Bates, J. B., Jellison, G. E. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524 (1997).

    Google Scholar 

  30. 30.

    Su, Y. et al. LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ion. 282, 63–69 (2015).

    Google Scholar 

  31. 31.

    Hamon, Y. et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion. 177, 257–261 (2006).

    Google Scholar 

  32. 32.

    Bates, J. B. et al. Electrical-properties of amorphous lithium electrolyte thin-films. Solid State Ion. 53, 647–654 (1992).

    Google Scholar 

  33. 33.

    Ruzmetov, D. et al. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12, 505–511 (2012).

    Google Scholar 

  34. 34.

    Kozen, A. C., Pearse, A. J., Lin, C. F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015).

    Google Scholar 

  35. 35.

    West, W. C. et al. Reduction of charge-transfer resistance at the solid electrolyte–electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J. Power Sources 312, 116–122 (2016).

    Google Scholar 

  36. 36.

    Kuwata, N., Iwagami, N., Tanji, Y., Matsuda, Y. & Kawamura, J. Characterization of thin-film lithium batteries with stable thin-film Li3PO4 solid electrolytes fabricated by ArF excimer laser deposition. J. Electrochem. Soc. 157, A521 (2010).

    Google Scholar 

  37. 37.

    Kuwata, N., Iwagami, N., Matsuda, Y., Tanji, Y. & Kawamura, J. Thin film batteries with Li3PO4 solid electrolyte fabricated by pulsed laser deposition. ECS Trans. 16, 53–60 (2009).

    Google Scholar 

  38. 38.

    Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016).

    Google Scholar 

  39. 39.

    Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    Google Scholar 

  40. 40.

    Hong, H. Y. P. Crystal-structures and crystal-chemistry in system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 11, 173–182 (1976).

    Google Scholar 

  41. 41.

    Petit, D., Colomban, P., Collin, G. & Boilot, J. P. Fast ion-transport in LiZr2(PO4)3—structure and conductivity. Mater. Res. Bull. 21, 365–371 (1986).

    Google Scholar 

  42. 42.

    Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

    Google Scholar 

  43. 43.

    Bucharsky, E. C., Schell, K. G., Hintennach, A. & Hoffmann, M. J. Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2−x(PO4)3. Solid State Ion. 274, 77–82 (2015).

    Google Scholar 

  44. 44.

    Knauth, P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 180, 911–916 (2009).

    Google Scholar 

  45. 45.

    West, W. C., Whitacre, J. F. & Lim, J. R. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J. Power Sources 126, 134–138 (2004).

    Google Scholar 

  46. 46.

    Jadhav, H. S., Kalubarme, R. S., Jadhav, A. H. & Seo, J. G. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries. Electrochim. Acta 199, 126–132 (2016).

    Google Scholar 

  47. 47.

    Xiao, W., Wang, J., Fan, L., Zhang, J. & Li, X. Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Mater. 19, 379–400 (2019).

    Google Scholar 

  48. 48.

    Wu, X. M. M., Chen, S., Mai, F. R. R., Zhao, J. H. H. & He, Z. Q. Q. Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films. Ionics 19, 589–593 (2013).

    Google Scholar 

  49. 49.

    Popovici, D., Nagai, H., Fujishima, S. & Akedo, J. Preparation of lithium aluminum titanium phosphate electrolytes thick films by aerosol deposition method. J. Am. Ceram. Soc. 94, 3847–3850 (2011).

    Google Scholar 

  50. 50.

    Inada, R. et al. Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films. Ceram. Int. https://doi.org/10.1016/j.ceramint.2015.05.062 (2015).

  51. 51.

    Ling, Q. et al. Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte. Mater. Lett. 169, 42–45 (2016).

    Google Scholar 

  52. 52.

    Tan, G., Wu, F., Li, L., Liu, Y. & Chen, R. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116, 3817–3826 (2012).

    Google Scholar 

  53. 53.

    Chen, H., Tao, H., Zhao, X. & Wu, Q. Fabrication and ionic conductivity of amorphous Li-Al-Ti-P-O thin film. J. Non Cryst. Solids 357, 3267–3271 (2011).

    Google Scholar 

  54. 54.

    Akedo, J. Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray. Technol. 17, 181–198 (2008).

    Google Scholar 

  55. 55.

    Kim, H. S. et al. Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Interfaces 9, 16063–16070 (2017).

    Google Scholar 

  56. 56.

    Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

    Google Scholar 

  57. 57.

    Kitaoka, K., Kozuka, H., Hashimoto, T. & Yoko, T. Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol–gel method. J. Mater. Sci. 32, 2063–2070 (1997).

    Google Scholar 

  58. 58.

    Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    Google Scholar 

  59. 59.

    Takada, K. Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759–770 (2013).

    Google Scholar 

  60. 60.

    Garcia-Martin, S., Amador, U., Morata-Orrantia, A., Rodriguez-Carvajal, J. & Alario-Franco, M. A. A. Structure, microstructure, composition and properties of lanthanum lithium titanates and some substituted analogues. Z. Anorg. Allg. Chem. 635, 2363–2373 (2009).

    Google Scholar 

  61. 61.

    Mei, A. et al. Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte. Electrochim. Acta 55, 2958–2963 (2010).

    Google Scholar 

  62. 62.

    Bohnke, O., Emery, J. & Fourquet, J. L. L. Anomalies in Li+ ion dynamics observed by impedance spectroscopy and Li-7 NMR in the perovskite fast ion conductor (Li3xLa2/3−x square(1/3−2x))TiO3. Solid State Ion. 158, 119–132 (2003).

    Google Scholar 

  63. 63.

    Kwon, W. J. J. et al. Enhanced Li+ conduction in perovskite Li3xLa2/3−x square 1/32xTiO3 solid-electrolytes via microstructural engineering. J. Mater. Chem. A 5, 6257–6262 (2017).

    Google Scholar 

  64. 64.

    Aguesse, F. et al. Microstructure and ionic conductivity of LLTO thin films: influence of different substrates and excess lithium in the target. Solid State Ion. 272, 1–8 (2015).

    Google Scholar 

  65. 65.

    Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014).

    Google Scholar 

  66. 66.

    Li, C. L., Zhang, B. & Fu, Z. W. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515, 1886–1892 (2006).

    Google Scholar 

  67. 67.

    Kim, S. et al. Low temperature synthesis and ionic conductivity of the epitaxial Li0.17La0.61TiO3 film electrolyte. CrystEngComm 16, 1044–1049 (2014).

    Google Scholar 

  68. 68.

    Furusawa, S., Tabuchi, H., Sugiyama, T., Tao, S. W. & Irvine, J. T. S. Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ion. 176, 553–558 (2005).

    Google Scholar 

  69. 69.

    Ahn, J.-K. K. & Yoon, S.-G. G. Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries. Electrochem. Solid State Lett. 8, A75 (2005).

    Google Scholar 

  70. 70.

    Ohnishi, T. & Takada, K. Synthesis and orientation control of Li-ion conducting epitaxial Li0.33La0.56TiO3 solid electrolyte thin films by pulsed laser deposition. Solid State Ion. 228, 80–82 (2012).

    Google Scholar 

  71. 71.

    Lee, J. Z., Wang, Z., Xin, H. L., Wynn, T. A. & Meng, Y. S. Amorphous lithium lanthanum titanate for solid-state microbatteries. J. Electrochem. Soc. 164, A6268–A6273 (2017).

    Google Scholar 

  72. 72.

    Ulusoy, S., Gulen, S., Aygun, G., Ozyuzer, L. & Ozdemir, M. Characterization of thin film Li0.5La0.5Ti1−xAlxO3 electrolyte for all-solid-state Li-ion batteries. Solid State Ion. 324, 226–232 (2018).

    Google Scholar 

  73. 73.

    Yuli, X. et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering. J. Alloy. Compd. 509, 1910–1914 (2011).

    Google Scholar 

  74. 74.

    Aaltonen, T., Alnes, M., Nilsen, O., Costelle, L. & Fjellvag, H. Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. J. Mater. Chem. 20, 2877–2881 (2010).

    Google Scholar 

  75. 75.

    Zheng, Z. F. F., Song, S. D. D. & Wang, Y. Sol-gel-processed amorphous lithium ion electrolyte thin films: structural evolution, theoretical considerations, and ion transport processes. Solid State Ion. 287, 60–70 (2016).

    Google Scholar 

  76. 76.

    Teranishi, T., Ishii, Y., Hayashi, H. & Kishimoto, A. Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol-gel process. Solid State Ion. 284, 1–6 (2016).

    Google Scholar 

  77. 77.

    Le, H. T. T., Ngo, D. T., Kim, Y.-J., Park, C.-N. & Park, C.-J. A perovskite-structured aluminium-substituted lithium lanthanum titanate as a potential artificial solid-electrolyte interface for aqueous rechargeable lithium-metal-based batteries. Electrochim. Acta 248, 232–242 (2017).

    Google Scholar 

  78. 78.

    Thangadurai, V. & Weppner, W. Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005).

    Google Scholar 

  79. 79.

    Bernuy-Lopez, C. et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater. 26, 3610–3617 (2014).

    Google Scholar 

  80. 80.

    Wu, J. F. et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces 9, 1542–1552 (2017).

    Google Scholar 

  81. 81.

    Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium Ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Google Scholar 

  82. 82.

    Tenhaeff, W. E. et al. Resolving the grain boundary and lattice impedance of hot‐pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1, 375–378 (2014).

    Google Scholar 

  83. 83.

    Knauth, P. & Tuller, H. L. Solid-state ionics: roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1654–1680 (2002).

    Google Scholar 

  84. 84.

    Rawlence, M. et al. Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7−3xGaxLa3Zr2O12 Thin Films. ACS Appl. Mater. Interfaces 10, 13720–13728 (2018).

    Google Scholar 

  85. 85.

    Rawlence, M., Garbayo, I., Buecheler, S. & Rupp, J. L. M. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films. Nanoscale 8, 14746–14753 (2016).

    Google Scholar 

  86. 86.

    Garbayo, I. et al. Glass-type polyamorphism in Li-garnet thin film solid state battery conductors. Adv. Energy Mater. 8, 1702265 (2018).

    Google Scholar 

  87. 87.

    Katsui, H. & Goto, T. Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 584, 130–134 (2015).

    Google Scholar 

  88. 88.

    Bitzer, M., Van Gestel, T., Uhlenbruck, S. & Hans Peter, B. Sol–gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615, 128–134 (2016).

    Google Scholar 

  89. 89.

    Kazyak, E. et al. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem. Mater. 29, 3785–3792 (2017).

    Google Scholar 

  90. 90.

    Wachtel, E. & Lubomirsky, I. Quasi-amorphous inorganic thin films: non-crystalline polar phases. Adv. Mater. 22, 2485–2493 (2010).

    Google Scholar 

  91. 91.

    Tan, J. J. & Tiwari, A. Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett. 1, Q57–Q60 (2012).

    Google Scholar 

  92. 92.

    Shimonishi, Y. et al. Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions. Solid State Ion. 183, 48–53 (2011).

    Google Scholar 

  93. 93.

    Nong, J., Xu, H., Yu, Z., Zhu, G. & Yu, A. Properties and preparation of Li-La-Ti-Zr-O thin film electrolyte. Mater. Lett. 154, 167–169 (2015).

    Google Scholar 

  94. 94.

    Kalita, D. J., Lee, S. H., Lee, K. S., Ko, D. H. & Yoon, Y. S. Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ion. 229, 14–19 (2012).

    Google Scholar 

  95. 95.

    Kim, S., Hirayama, M., Taminato, S. & Kanno, R. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans. 42, 13112–13117 (2013).

    Google Scholar 

  96. 96.

    Pfenninger, R., Struzik, M., Garbayo, I. I., Stilp, E. & Rupp, J. L. M. A low ride on processing temperature for a fast Li conduction in garnet solid state battery films. Nat. Energy 4, 475–483 (2019).

    Google Scholar 

  97. 97.

    Rettenwander, D. One step closer to realizing solid-state batteries with cubic Li7La3Zr2O12 garnets. Chem 5, 1695–1696 (2019).

    Google Scholar 

  98. 98.

    Rupp, J. L. M., Struzik, M., Nenning, A., Garbayo, I. & Pfenninger, R. M. Methods of fabricating thin films comprising lithium-containing materials. US patent 62/718,842 (2018).

  99. 99.

    Sastre, J. et al. Lithium garnet Li7La3Zr2O12 electrolyte for all‐solid‐state batteries: closing the gap between bulk and thin film Li‐ion conductivities. Adv. Mater. Interfaces 7, 2000425 (2020).

  100. 100.

    Chen, R.-J. et al. Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. J. Mater. Chem. A 2, 13277–13282 (2014).

    Google Scholar 

  101. 101.

    Tadanaga, K. et al. Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J. Power Sources 273, 844–847 (2015).

    Google Scholar 

  102. 102.

    Zhu, Y., Hood, Z.D. Miara, L. & Rupp, J.L.M. Solution-processed solid-state electrolyte and method of manufacture thereof. US patent 62/713,428 (2018).

  103. 103.

    Zhu, Y., Hood, Z.D. Miara, L. & Rupp, J.L.M. Solid-state electrolyte and method of manufacture thereof. US patent 62/713,366 (2018).

  104. 104.

    Afyon, S., Krumeich, F. & Rupp, J. L. M. A shortcut to garnet-type fast Li-ion conductors for all-solid state batteries. J. Mater. Chem. A 3, 18636–18648 (2015).

    Google Scholar 

  105. 105.

    Wang, X. R. & Yushin, G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ. Sci. 8, 1889–1904 (2015).

    Google Scholar 

  106. 106.

    Pearse, A. et al. Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12, 4286–4294 (2018).

    Google Scholar 

  107. 107.

    Letiche, M. et al. Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Adv. Energy Mater. 7, 1601402 (2017).

    Google Scholar 

  108. 108.

    Castro-Garcia, S., Castro-Couceiro, A., Senaris-Rodriguez, M. A., Soulette, F. & Julien, C. Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides. Solid State Ion. 156, 15–26 (2003).

    Google Scholar 

  109. 109.

    Li, Y., Cao, Y. & Guo, X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolytes. Solid State Ion. 253, 76–80 (2013).

    Google Scholar 

  110. 110.

    Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

    Google Scholar 

  111. 111.

    Yi, E. et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks. ACS Appl. Energy Mater. 3, 170–175 (2020).

    Google Scholar 

  112. 112.

    McOwen, D. W. et al. 3D-printing electrolytes for solid-state batteries. Adv. Mater. 30, 1707132 (2018).

    Google Scholar 

  113. 113.

    Yang, C. et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl Acad. Sci. USA 115, 3770–3775 (2018).

    Google Scholar 

  114. 114.

    Zhu, Y. et al. Solid state lithionics: lithium film ceramics towards future functionalities. Nat. Rev. Mater. https://doi.org/10.1038/s41578-020-00261-0 (2020).

  115. 115.

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Google Scholar 

Download references

Acknowledgements

Researchers were supported in parts by Samsung Electronics, NGK Inc., the Swiss National Science Foundation (grant number BSSGI0_155986) and the National Science Foundation MRSEC Program (grant number DMR-1419807). M.B. acknowledges financial support from the US-Israel Fulbright Program, the Zuckerman Israeli Postdoctoral Scholar Program and the MIT-Technion Postdoctoral Fellowship. Y.Z. acknowledges financial support from the ExxonMobil-MIT Energy Initiative Fellowship. J.L.M.R. thanks the Thomas Lord Foundation for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. M. Rupp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Kiyoshi Kanamura, Richard Schmuch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balaish, M., Gonzalez-Rosillo, J.C., Kim, K.J. et al. Processing thin but robust electrolytes for solid-state batteries. Nat Energy 6, 227–239 (2021). https://doi.org/10.1038/s41560-020-00759-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing