Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering

Abstract

Bifacial monolithic perovskite/silicon tandem solar cells exploit albedo—the diffuse reflected light from the environment—to increase their performance above that of monofacial perovskite/silicon tandems. Here we report bifacial tandems with certified power conversion efficiencies >25% under monofacial AM1.5G 1 sun illumination that reach power-generation densities as high as ~26 mW cm–2 under outdoor testing. We investigated the perovskite bandgap required to attain optimized current matching under a variety of realistic illumination and albedo conditions. We then compared the properties of these bifacial tandems exposed to different albedos and provide energy yield calculations for two locations with different environmental conditions. Finally, we present a comparison of outdoor test fields of monofacial and bifacial perovskite/silicon tandems to demonstrate the added value of tandem bifaciality for locations with albedos of practical relevance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Perovskite/silicon bifacial tandems.
Fig. 2: Optical analysis.
Fig. 3: Outdoor testing of bifacial tandems.
Fig. 4: Analysis and energy yields of the test fields.

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information

References

  1. Best-Research Cell Efficiency Chart (NREL, 2020).

  2. Aydin, E., De Bastiani, M. & De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019).

    Article  Google Scholar 

  3. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  Google Scholar 

  4. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  Google Scholar 

  5. Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Article  Google Scholar 

  6. Aydin, E. et al. Zr‐doped indium oxide (IZRO) transparent electrodes for perovskite‐based tandem solar cells. Adv. Funct. Mater. 29, 1901741 (2019).

    Article  Google Scholar 

  7. Dewi, H. A. et al. Highly efficient semitransparent perovskite solar cells for four terminal perovskite–silicon tandems. ACS Appl. Mater. interfaces 11, 34178–34187 (2019).

    Article  Google Scholar 

  8. Chen, B. et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 11, 1257 (2020).

    Article  Google Scholar 

  9. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  Google Scholar 

  10. Elshorbagy, M. H. et al. A monolithic nanostructured-perovskite/silicon tandem solar cell: feasibility of light management through geometry and materials selection. Sci. Rep. 10, 1–8 (2020).

    Article  Google Scholar 

  11. Duong, T. et al. High efficiency perovskite–silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10, 1903553 (2010).

    Article  Google Scholar 

  12. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  Google Scholar 

  13. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–826 (2018).

    Article  Google Scholar 

  14. Liang, T. S. et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 12, 116–148 (2019).

    Article  Google Scholar 

  15. Asadpour, R., Chavali, R. V., Ryyan Khan, M. & Alam, M. A. Bifacial Si heterojunction–perovskite organic–inorganic tandem to produce highly efficient (\(\eta_T^*\) 33%) solar cell. Appl. Phys. Lett. 106, 243902 (2015).

    Article  Google Scholar 

  16. Onno, A. et al. Predicted power output of silicon-based bifacial tandem photovoltaic systems. Joule 4, 580–596 (2020).

    Article  Google Scholar 

  17. Dupré, O. et al. Design rules to fully benefit from bifaciality in two-terminal perovskite/silicon tandem solar cells. IEEE J. Photovolt. 10, 714–721 (2020).

    Article  Google Scholar 

  18. Geerligs, L. J., Zhang, D., Janssen, G. J. M. & Luxembourg, S. L. 4-Terminal and 2-Terminal Tandem Modules in Bifacial Operation: Model Analysis and Comparison http://resolver.tudelft.nl/uuid:a06611b9-78b2-46dd-8a04-ca02cac50111 (2018).

  19. Coletti, G. et al. Bifacial four-terminal perovskite/silicon tandem solar cells and modules. ACS Energy Lett. 5, 1676–1680 (2020).

    Article  Google Scholar 

  20. Onno, A., Chen, C., Koswatta, P., Boccard, M. & Holman, Z. C. Passivation, conductivity, and selectivity in solar cell contacts: concepts and simulations based on a unified partial-resistances framework. J. Appl. Phys. 126, 183103 (2019).

    Article  Google Scholar 

  21. Lehr, J. et al. Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces. Sustain. Energy Fuels 2, 2754–2761 (2018).

    Article  Google Scholar 

  22. Lehr, J. et al. Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Sol. Energy Mater. Sol. Cells 208, 110367 (2020).

    Article  Google Scholar 

  23. Jacobs, D. A. et al. Light management: a key concept in high-efficiency perovskite/silicon tandem photovoltaics. J. Phys. Chem. Lett. 10, 3159–3170 (2019).

    Article  Google Scholar 

  24. Gharibzadeh, S. et al. Record open‐circuit voltage wide‐bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).

    Article  Google Scholar 

  25. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  Google Scholar 

  26. Boccard, M. & Ballif, C. Influence of the subcell properties on the fill factor of two-terminal perovskite–silicon tandem solar cells. ACS Energy Lett. 5, 1077–1082 (2020).

    Article  Google Scholar 

  27. Köhnen, E. et al. Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain. Energy Fuels 3, 1995–2005 (2019).

    Article  Google Scholar 

  28. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 1–7 (2017).

    Article  Google Scholar 

  29. Holman, Z. C. et al. Parasitic absorption in the rear reflector of a silicon solar cell: simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors. Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).

    Article  Google Scholar 

  30. Liu, H. et al. A worldwide theoretical comparison of outdoor potential for various silicon-based tandem module architecture. Cell Rep. Phys. Sci. 1, 100037 (2020).

    Article  Google Scholar 

  31. Guerrero-Lemus, R., Vega, R., Kim, T., Kimm, A. & Shephard, L. Bifacial solar photovoltaics—a technology review. Renew. Sustain. Energy Rev. 60, 1533–1549 (2016).

    Article  Google Scholar 

  32. Aydin E. et al. Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells. ACS Appl. Energy Mater. 1, 6227–6233 (2018).

    Article  Google Scholar 

  33. Zhan, T., Xiong, J., Lee, Y.-H., Chen, R. & Wu, S.-T. Fabrication of Pancharatnam–Berry phase optical elements with highly stable polarization holography. Opt. Express 27, 2632–2642 (2019).

    Article  Google Scholar 

  34. Baker‐Finch, S. C. & McIntosh, K. R. Reflection of normally incident light from silicon solar cells with pyramidal texture. Prog. Photovolt. Res. Appl. 19, 406–416 (2011).

    Article  Google Scholar 

  35. Wilcox, S. & Marion, W. Users Manual for TMY3 Data Sets NREL/TP-581-43156 (NREL, 2008).

  36. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001).

    Article  Google Scholar 

  37. Schmager, R. et al. Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics. Opt. Express 27, A507–A523 (2019).

    Article  Google Scholar 

  38. Baldridge, A. M., Hook, S., Grove, C. & Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 113, 711–715 (2009).

    Article  Google Scholar 

  39. Sun, X., Khan, M. R., Deline, C. & Alam, M. A. Optimization and performance of bifacial solar modules: A global perspective. Appl. Energy 212, 1601–1610 (2018).

    Article  Google Scholar 

  40. Hottel, H. C. & Sarofim, A. F. Radiative Transfer (McGraw-Hill, 1967).

  41. Appelbaum, J. View factors to grounds of photovoltaic collectors. J. Solar Energy Eng. 138, 064501 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2018-CPF-3669.02, KAUST OSR-CARF URF/1/ 3079-33-01, KAUST OSR-CRG RF/1/3383, KAUST OSR-CRG2018-3737 and IED OSR-2019-4208. This work was supported in part by the US Department of the Navy, Office of Naval Research (grant award no. N00014-20-1-2572). The financial support of the German Federal Ministry for Economic Affairs and Energy (CAPITANO, funding code 03EE1038B) and the Initiating and Networking funding of the Helmholtz Association (HYIG to U.W.P. (funding code VH-NG1148), PEROSEED (funding code ZT-0024) and the Science and Technology of Nanostructures Research Program) is acknowledged. Furthermore, we are grateful for the help and support of A. Mertens and A. Rozalier from KIT in setting up the outdoor measurements in Karslruhe as well as M. Langenhorst, R. Schamger and J. Lehr for developing earlier versions of the energy-yield software. We acknowledge the support of ABET Technologies and Newport. We thank TUV Rheinland Group, Germany, for providing solar spectra from TUV’s outdoor test field on the KAUST campus, Thuwal, Saudi Arabia. We are grateful for the support of J. L. Mynar and the KAUST Corelab, and for the fruitful discussions with A. H. Balawi.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B. conceived the idea; M.D.B. and A.J.M. fabricated the devices; Y.H., B.C. and A.S.S. developed the perovskite bandgaps; E.A. developed the tandem top contact and layout; E.A. and F.H.I. developed the tandem hole transport layer; M.D.B., T.G.A. and E.V.K. developed the silicon bottom cell; F.G., U.W.P. and L.X. performed the optical modelling; J.L. performed the electrical modelling; M.F.S., F.G., J.T. and J.L. developed the field-test set-up; F.G. and U.W.P. performed the energy-yield calculations; M.F.S. supervised the field-test experiment; M.D.B., M.F.S., A.S.S., F.G. and U.W.P. wrote the manuscript; D.B., B.F., E.H.S. and S.D.W. supervised the project.

Corresponding authors

Correspondence to Edward H. Sargent or Stefaan De Wolf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Energy thanks Gianluca Coletti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Tables 1–6 and Note 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Bastiani, M., Mirabelli, A.J., Hou, Y. et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat Energy 6, 167–175 (2021). https://doi.org/10.1038/s41560-020-00756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-020-00756-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing