Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes

Abstract

Magnesium batteries have long been pursued as potentially low-cost, high-energy and safe alternatives to Li-ion batteries. However, Mg2+ interacts strongly with electrolyte solutions and cathode materials, leading to sluggish ion dissociation and diffusion, and consequently low power output. Here we report a heterogeneous enolization chemistry involving carbonyl reduction (C=O↔C–O), which bypasses the dissociation and diffusion difficulties, enabling fast and reversible redox processes. This kinetically favoured cathode is coupled with a tailored, weakly coordinating boron cluster-based electrolyte that allows for dendrite-free Mg plating/stripping at a current density of 20 mA cm−2. The combination affords a Mg battery that delivers a specific power of up to 30.4 kW kg−1, nearly two orders of magnitude higher than that of state-of-the-art Mg batteries. The cathode and electrolyte chemistries elucidated here propel the development of magnesium batteries and would accelerate the adoption of this low-cost and safe battery technology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Proposed cathode heterogeneous enolization redox chemistry.
Fig. 2: Practicality of heterogeneous enolization redox chemistry on cycling stability and anode reversibility.
Fig. 3: Design process and electrochemical performance of MMC/(DME-G2) electrolyte.
Fig. 4: Electrochemical behaviour of Mg–PTO full cells in 0.5 mol kg−1 MMC/(DME-G2) electrolyte.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. 1.

    Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).

    Article  Google Scholar 

  2. 2.

    Yoo, H. D. et al. Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265–2279 (2013).

    Article  Google Scholar 

  3. 3.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  4. 4.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  5. 5.

    Attias, R., Salama, M., Hirsch, B., Goffer, Y. & Aurbach, D. Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3, 27–52 (2019).

    Article  Google Scholar 

  6. 6.

    Mohtadi, R. & Mizuno, F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291–1311 (2014).

    Article  Google Scholar 

  7. 7.

    Wan, L. F., Perdue, B. R., Apblett, C. A. & Prendergast, D. Mg desolvation and intercalation mechanism at the Mo6S8 chevrel phase surface. Chem. Mater. 27, 5932–5940 (2015).

    Article  Google Scholar 

  8. 8.

    Canepa, P. et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287–4341 (2017).

    Article  Google Scholar 

  9. 9.

    Sun, X. et al. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273–2277 (2016).

    Article  Google Scholar 

  10. 10.

    Dong, H. et al. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 3, 782–793 (2019).

    Article  Google Scholar 

  11. 11.

    Li, Z. et al. Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nat. Commun. 9, 5115 (2018).

    Article  Google Scholar 

  12. 12.

    Yoo, H. D. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 8, 339 (2017).

    Article  Google Scholar 

  13. 13.

    Fan, X. et al. A universal organic cathode for ultrafast lithium and multivalent metal batteries. Angew. Chem. Int. Ed. Engl. 57, 7146–7150 (2018).

    Article  Google Scholar 

  14. 14.

    Kim, H. et al. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 8, 2963–2969 (2015).

    Article  Google Scholar 

  15. 15.

    Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    Article  Google Scholar 

  16. 16.

    Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. Engl. 54, 7900–7904 (2015).

    Article  Google Scholar 

  17. 17.

    Zhao-Karger, Z., Gil Bardaji, M. E., Fuhr, O. & Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 5, 10815–10820 (2017).

    Article  Google Scholar 

  18. 18.

    Shao, Y. et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 12, 750–759 (2015).

    Article  Google Scholar 

  19. 19.

    Rajput, N. N., Seguin, T. J., Wood, B. M., Qu, X. & Persson, K. A. Elucidating solvation structures for rational design of multivalent electrolytes—a review. Top. Curr. Chem. 376, 19 (2018).

    Article  Google Scholar 

  20. 20.

    Yamin, H. Lithium sulfur battery. J. Electrochem. Soc. 135, 1045 (1988).

    Article  Google Scholar 

  21. 21.

    Merritt, M. V. & Sawyer, D. T. Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8 species. Inorg. Chem. 9, 211–215 (1970).

    Article  Google Scholar 

  22. 22.

    Du, A. et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ. Sci. 10, 2616–2625 (2017).

    Article  Google Scholar 

  23. 23.

    Huang, X. et al. Cyclic voltammetry in lithium–sulfur batteries—challenges and opportunities. Energy Technol. 7, 1801001 (2019).

    Google Scholar 

  24. 24.

    Suga, T., Pu, Y.-J., Oyaizu, K. & Nishide, H. Electron-transfer kinetics of nitroxide radicals as an electrode-active material. Bull. Chem. Soc. Jpn. 77, 2203–2204 (2004).

    Article  Google Scholar 

  25. 25.

    Martínez-Cifuentes, M., Salazar, R., Ramírez-Rodríguez, O., Weiss-López, B. & Araya-Maturana, R. Experimental and theoretical reduction potentials of some biologically active ortho-carbonyl para-quinones. Molecules 22, 577 (2017).

    Article  Google Scholar 

  26. 26.

    Rüssel, C. & Janicke, W. Heterogeneous electron exchange of quinones in aprotic solvents: part III. The second reduction step of p-benzoquinone and its dependence on the supporting electrolyte. J. Electroanal. Chem. Interf. Electrochem. 199, 139–151 (1986).

    Article  Google Scholar 

  27. 27.

    Lehmann, M. W. & Evans, D. H. Anomalous behavior in the two-step reduction of quinones in acetonitrile. J. Electroanal. Chem. 500, 12–20 (2001).

    Article  Google Scholar 

  28. 28.

    Nikitina, V. A., Nazmutdinov, R. R. & Tsirlina, G. A. Quinones electrochemistry in room-temperature ionic liquids. J. Phys. Chem. B 115, 668–677 (2011).

    Article  Google Scholar 

  29. 29.

    Oyama, M., Hoshino, T. & Okazaki, S. Solvent effect on the ion pair formation between 2,3,5,6-tetrachloro-1,4-benzoquinone anion radical and Mg2+ measured using a pulse electrolysis stopped flow method. J. Electroanal. Chem. 401, 243–246 (1996).

    Article  Google Scholar 

  30. 30.

    Hernández-Burgos, K., Rodríguez-Calero, G. G., Zhou, W., Burkhardt, S. E. & Abruña, H. D. Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J. Am. Chem. Soc. 135, 14532–14535 (2013).

    Article  Google Scholar 

  31. 31.

    Martin, R. P., Doub, W. H., Roberts, J. L. & Sawyer, D. T. Electrochemical reduction of sulfur in aprotic solvents. Inorg. Chem. 12, 1921–1925 (1973).

    Article  Google Scholar 

  32. 32.

    Lu, Y.-C., He, Q. & Gasteiger, H. A. Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C. 118, 5733–5741 (2014).

    Article  Google Scholar 

  33. 33.

    Huang, J.-Q. et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 9, 3002–3011 (2015).

    Article  Google Scholar 

  34. 34.

    Tian, J., Zhou, X., Wu, Q. & Li, C. Li-salt mediated Mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Mater. 22, 218–227 (2019).

    Article  Google Scholar 

  35. 35.

    Salama, M. et al. On the feasibility of practical Mg–S batteries: practical limitations associated with metallic magnesium anodes. ACS Appl. Mater. Interfaces 10, 36910–36917 (2018).

    Article  Google Scholar 

  36. 36.

    Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J.-G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  37. 37.

    Luo, J., Bi, Y., Zhang, L., Zhang, X. & Liu, T. L. A stable, non-corrosive perfluorinated pinacolatoborate Mg electrolyte for rechargeable Mg batteries. Angew. Chem. Int. Ed. Engl. 58, 6967–6971 (2019).

    Article  Google Scholar 

  38. 38.

    Wang, W. et al. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem. Commun. 50, 13089–13092 (2014).

    Article  Google Scholar 

  39. 39.

    Bitenc, J., Vizintin, A., Grdadolnik, J. & Dominko, R. Tracking electrochemical reactions inside organic electrodes by operando IR spectroscopy. Energy Storage Mater. 21, 347–353 (2019).

    Article  Google Scholar 

  40. 40.

    Gueon, D., Ju, M.-Y. & Moon, J. H. Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li−S batteries. Proc. Natl Acad. Sci. USA 117, 12686–12692 (2020).

    Article  Google Scholar 

  41. 41.

    Li, Z., Zhang, J. T., Chen, Y. M., Li, J. & Lou, X. W. Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 6, 8850 (2015).

    Article  Google Scholar 

  42. 42.

    Pei, F. et al. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 8, 482 (2017).

    Article  Google Scholar 

  43. 43.

    Kang, N. et al. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat. Commun. 10, 4597 (2019).

    Article  Google Scholar 

  44. 44.

    Singh, N. et al. Achieving high cycling rates via in situ generation of active nanocomposite metal anodes. ACS Appl. Energy Mater. 1, 4651–4661 (2018).

    Article  Google Scholar 

  45. 45.

    Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  Google Scholar 

  46. 46.

    Pan, B. et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 6, 1600140 (2016).

    Article  Google Scholar 

  47. 47.

    Qiao, R. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the Advanced Light Source. Rev. Sci. Instrum. 88, 033106 (2017).

    Article  Google Scholar 

  48. 48.

    Harris, R. K., Becker, E. D., Cabral de Menezes, S. M., Goodfellow, R. & Granger, P. NMR nomenclature: nuclear spin properties and conventions for chemical shifts: IUPAC recommendations 2001. Solid State Nucl. Magn. Reson. 22, 458–483 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Y.Y. acknowledges the support of University of Houston. R.M. and O.T. acknowledge the funding provided from Toyota Motor Corporation. This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. We acknowledge K. Suto, Y. Kotani, F. Mizuno, T. Matsunaga and H. Aso from Toyota Motor Corporation and K. Takechi from Toyota Central R&D, N. Singh, T. A. Arthur, R. Sugiura, P. Fanson and T. Inoue at Toyota Research Institute of North America for support and discussion.

Author information

Affiliations

Authors

Contributions

H.D., O.T., Y.L., R.M. and Y.Y. conceived and designed the experiments. O.T. and R.M. synthesized the electrolytes. H.D. synthesized and fabricated organic electrodes. H.D., O.T. and Y.Z. performed electrochemical and materials characterizations. H.D. and Y.Z. prepared GO membranes. W.Y. and Z.L.-H. performed soft X-ray absorption spectroscopy measurements. H.D., O.T., Y.L., R.M. and Y.Y. wrote the manuscript. R.M. and Y.Y. supervised the project.

Corresponding authors

Correspondence to Rana Mohtadi or Yan Yao.

Ethics declarations

Competing interests

R.M. is inventor on US Patent 9240613 and O.T. and R.M. are inventors on US Patents 9252458 and 20180151917, which are assigned to Toyota Motor Engineering & Manufacturing North America, Inc. Y.Y., H.D. and Y.L. are inventors on US Patent 63043240. O.T. and R.M. are employees of Toyota Research Institute of North America, the research division at Toyota Motor Engineering & Manufacturing North America (TEMA), Inc.

Additional information

Peer review information Nature Energy thanks Vinayan Bhaghavathi Parambath, Niya Sa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–3, Figs. 1–14 and Notes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Tutusaus, O., Liang, Y. et al. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat Energy 5, 1043–1050 (2020). https://doi.org/10.1038/s41560-020-00734-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing