Estimation of change in house sales prices in the United States after heat pump adoption


Electrifying most fossil-fuel-burning applications provides a pathway to achieving cost-effective deep decarbonization of the economy. Heat pumps offer a feasible and energy-efficient way to electrify space heating. Here, we show a positive house price premium associated with air source heat pump installations across 23 states in the United States. Residences with an air source heat pump enjoy a 4.3–7.1% (or US$10,400–17,000) price premium on average. Residents who are environmentally conscious, middle class and live in regions with mild climate are more likely to pay a larger price premium. We find that estimated price premiums are larger than the calculated total social benefits of switching to heat pumps. Policymakers could provide information about the estimated price premium to influence the adoption of heat pumps.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The distribution of air source heat pumps by county level in the United States in 2018.
Fig. 2: Contemporaneous energy efficiency and building upgrades correlated with air source heat pump adoption.
Fig. 3: The heterogeneity of the price premium induced by air source heat pumps.
Fig. 4: Comparing the price premium with the cost and benefit of replacing a traditional HVAC system with an air source heat pump.

Data availability

Individual property data were provided by Zillow through the Zillow Transaction and Assessment Database (ZTRAX). More information on accessing the data can be found at The data are proprietary and are not publicly available under a non-disclosure agreement with Zillow. Interested readers can submit a request to Zillow for approval to obtain the data. Other data used for this analysis are available from the publicly available sources cited or from the authors upon reasonable request. Source data are provided with this paper.

Code availability

The custom code of the data processing and analysis is deposited and managed on GitHub (


  1. 1.

    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  2. 2.

    Denis, A. et al. Pathways to deep decarbonization - 2015 report (Sustainable Development Solutions Network, Institute for Sustainable Development and International Relations, 2015).

  3. 3.

    Hultman, N. et al. Accelerating America’s Pledge: Going All-in to Build a Prosperous, Low-Carbon Economy for the United States (University of Maryland Center for Global Sustainability, Rocky Mountain Institute, World Resources Institute, Bloomberg Philanthropies, 2019).

  4. 4.

    Davis, S. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  Google Scholar 

  5. 5.

    Lucon, O. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

  6. 6.

    MacKay, D. Sustainable Energy - Without The Hot Air (UIT Cambridge: 2008). .

  7. 7.

    The heat is on. Nature 450, 319–319 (2007).

  8. 8.

    Biardeau, L., Davis, L., Gertler, P. & Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 3, 25–28 (2019).

    Article  Google Scholar 

  9. 9.

    Aydin, E., Eichholtz, P. & Yönder, E. The economics of residential solar water heaters in emerging economies: the case of Turkey. Energy Econ. 75, 285–299 (2018).

    Article  Google Scholar 

  10. 10.

    Qiu, Y., Wang, Y. & Wang, J. Soak up the sun: impact of solar energy systems on residential home values in Arizona. Energy Econ. 66, 328–336 (2017).

    Article  Google Scholar 

  11. 11.

    Hoen, B., Wiser, R., Thayer, M. & Cappers, P. Residential photovoltaic energy systems in California: the effect on home sales prices. Contemp. Econ. Policy 31, 708–718 (2012).

    Article  Google Scholar 

  12. 12.

    Dastrup, S., Graff Zivin, J., Costa, D. & Kahn, M. Understanding the solar home price premium: electricity generation and “green” social status. Eur. Econ. Rev. 56, 961–973 (2012).

    Article  Google Scholar 

  13. 13.

    Walls, M., Gerarden, T., Palmer, K. & Bak, X. Is energy efficiency capitalized into home prices? Evidence from three U.S. cities. J. Environ. Econ. Manage. 82, 104–124 (2017).

    Article  Google Scholar 

  14. 14.

    Kahn, M. & Kok, N. The capitalization of green labels in the California housing market. Reg. Sci. Urban Econ. 47, 25–34 (2014).

    Article  Google Scholar 

  15. 15.

    Deng, Y., Li, Z. & Quigley, J. Economic returns to energy-efficient investments in the housing market: evidence from Singapore. Reg. Sci. Urban Econ. 42, 506–515 (2012).

    Article  Google Scholar 

  16. 16.

    Deng, Y. & Wu, J. Economic returns to residential green building investment: the developers’ perspective. Reg. Sci. Urban Econ. 47, 35–44 (2014).

    Article  Google Scholar 

  17. 17.

    Brounen, D. & Kok, N. On the economics of energy labels in the housing market. J. Environ. Econ. Manage. 62, 166–179 (2011).

    Article  Google Scholar 

  18. 18.

    Jayantha, W. M. & Man, W. S. Effect of green labelling on residential property price: a case study in Hong Kong. J. Facil. Manage. 11, 31–51 (2013).

    Article  Google Scholar 

  19. 19.

    Eichholtz, P., Kok, N. & Quigley, J. Doing well by doing good? Green office buildings. Am. Econ. Rev. 100, 2492–2509 (2010).

    Article  Google Scholar 

  20. 20.

    Eichholtz, P., Kok, N. & Quigley, J. The economics of green building. Rev. Econ. Stat. 95, 50–63 (2013).

    Article  Google Scholar 

  21. 21.

    Costa, O., Fuerst, F., Robinson, S. & Mendes-Da-Silva, W. Green label signals in an emerging real estate market: a case study of Sao Paulo, Brazil. J. Clean. Prod. 184, 660–670 (2018).

    Article  Google Scholar 

  22. 22.

    Fowlie, M., Greenstone, M. & Wolfram, C. Do energy efficiency investments deliver? Evidence from the weatherization assistance program. Q. J. Econ. 133, 1597–1644 (2018).

    Article  Google Scholar 

  23. 23.

    Allcott, H. & Greenstone, M. Is there an energy efficiency gap? J. Econ. Perspect. 26, 3–28 (2012).

    Article  Google Scholar 

  24. 24.

    Gillingham, K. & Palmer, K. Bridging the energy efficiency gap: policy insights from economic theory and empirical evidence. Rev. Environ. Econ. Policy 8, 18–38 (2014).

    Article  Google Scholar 

  25. 25.

    Gerarden, T., Newell, R. & Stavins, R. Deconstructing the energy-efficiency gap: conceptual frameworks and evidence. Am. Econ. Rev. 105, 183–186 (2015).

    Article  Google Scholar 

  26. 26.

    Liang, J. et al. Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix. J. Environ. Econ. Manage. 92, 726–743 (2018).

    Article  Google Scholar 

  27. 27.

    Zillow’s Assessor and Real Estate Database (Zillow Research, 2020);

  28. 28.

    Kuminoff, N. & Pope, J. Do “capitalization effects” for public goods reveal the public’s willingness to pay? Int. Econ. Rev. 55, 1227–1250 (2014).

    Article  Google Scholar 

  29. 29.

    Muehlenbachs, L., Spiller, E. & Timmins, C. The housing market impacts of shale gas development. Am. Econ. Rev. 105, 3633–3659 (2015).

    Article  Google Scholar 

  30. 30.

    US Energy Information Administration. Residential Energy Consumption Survey (RECS) (2020).

  31. 31.

    Mense, A. The value of energy efficiency and the role of expected heating costs. Environ. Resour. Econ. 71, 671–701 (2017).

    Article  Google Scholar 

  32. 32.

    Howe, P., Mildenberger, M., Marlon, J. & Leiserowitz, A. Geographic variation in opinions on climate change at state and local scales in the USA. Nat. Clim. Change 5, 596–603 (2015).

    Article  Google Scholar 

  33. 33.

    Cai, Z., Fang, Y., Lin, M. & Su, J. Inferences for a partially varying coefficient model with endogenous regressors. J. Bus. Econ. Stat. 37, 158–170 (2017).

    MathSciNet  Article  Google Scholar 

  34. 34.

    Strong, D. Impacts of diffusion policy: determinants of early smart meter diffusion in the US electric power industry. Ind. Corp. Change 28, 1343–1363 (2019).

    Google Scholar 

  35. 35.

    Walden, E. & Browne, G. Sequential adoption theory: a theory for understanding herding behavior in early adoption of novel technologies. J. Assoc. Inf. Syst. 10, 31–62 (2009).

    Google Scholar 

  36. 36.

    Mulder, P., de Groot, H. & Hofkes, M. Explaining slow diffusion of energy-saving technologies: a vintage model with returns to diversity and learning-by-using. Resour. Energy Econ. 25, 105–126 (2003).

    Article  Google Scholar 

  37. 37.

    Bollinger, B. & Gillingham, K. Learning-by-doing in solar photovoltaic installations. SSRN (2014).

  38. 38.

    Gillingham, K. et al. Deconstructing solar photovoltaic pricing. Energy J. 37, 231–250 (2016).

    Article  Google Scholar 

  39. 39.

    Houde, S. How consumers respond to product certification and the value of energy information. Rand J. Econ. 49, 453–477 (2018).

    Article  Google Scholar 

  40. 40.

    Ito, K. Do consumers respond to marginal or average price? Evidence from nonlinear electricity pricing. Am. Econ. Rev. 104, 537–563 (2014).

    Article  Google Scholar 

  41. 41.

    Brent, D. & Ward, M. Energy efficiency and financial literacy. J. Environ. Econ. Manage. 90, 181–216 (2018).

    Article  Google Scholar 

  42. 42.

    Barbose, G., Darghouth, N., LaCommare, K., Millstein, D. & Rand, J. Tracking the Sun: Installed Price Trends for Distributed Photovoltaic Systems in the United States - 2018 Edition (Lawrence Berkeley National Laboratory, 2018).

  43. 43.

    Qiu, Y., Colson, G. & Grebitus, C. Risk preferences and purchase of energy-efficient technologies in the residential sector. Ecol. Econ. 107, 216–229 (2014).

    Article  Google Scholar 

  44. 44.

    CNBC. Here’s how much money Americans have in savings at every income level (2018).

  45. 45.

    Angrist, J.Harmless Econometrics: An Empiricist’s Companion (Princeton Univ. Press, 2008).

  46. 46.

    Imbens, G. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev. Econ. Stat. 86, 4–29 (2004).

    Article  Google Scholar 

  47. 47.

    Lechner, M. The estimation of causal effects by difference-in-difference methods estimation of spatial panels. Found. Trends Econom. 4, 165–224 (2010).

    Article  Google Scholar 

  48. 48.

    Gallin, J. The long-run relationship between house prices and income: evidence from local housing markets. Real Estate Econ. 34, 417–438 (2006).

    Article  Google Scholar 

  49. 49.

    Myers, E. Are home buyers inattentive? Evidence from capitalization of energy costs. Am. Econ. J. Econ. Pol. 11, 165–188 (2019).

    Article  Google Scholar 

  50. 50.

    Lundberg, A., Huynh, K. & Jacho-Chávez, D. Income and democracy: a smooth varying coefficient redux. J. Appl. Econom. 32, 719–724 (2016).

    MathSciNet  Article  Google Scholar 

  51. 51.

    Delgado, M., McCloud, N. & Kumbhakar, S. A generalized empirical model of corruption, foreign direct investment, and growth. J. Macroecon. 42, 298–316 (2014).

    Article  Google Scholar 

  52. 52.

    Su, L., Murtazashvili, I. & Ullah, A. Local linear GMM estimation of functional coefficient IV models with an application to estimating the rate of return to schooling. J. Bus. Econ. Stat. 31, 184–207 (2013).

    MathSciNet  Article  Google Scholar 

  53. 53.

    Macrotrends. Federal funds rate - 62 year historical chart (2020).

  54. 54.

    Bureau of Economic Analysis, US Department of Commerce. Regional data: GDP and income (2019).

  55. 55.

    US Energy Information Administration. Natural gas prices (2019).

  56. 56.

    US Energy Information Administration. Electricity: detailed state data (2019).

  57. 57.

    Climate data online. National Oceanic and Atmospheric Administration (2020).

Download references


The results and opinions are those of the authors and do not reflect the position of Zillow Group. Funding for this research was provided by the Alfred P. Sloan Foundation. We thank A. Albertini, Y. Niu, T. Deetjen, T. Schmidt, E. Wilson and seminar participants at the Center for Global Sustainability for helpful comments during the preparation of this paper.

Author information




X.S., P.L. and Y.Q. designed the study and planned the analysis. X.S. conducted the data analysis and drafted the paper. P.L., Y.Q. and P.V. edited the paper. P.V. provided initial calculations on private and social benefits. All authors offered revision suggestions and contributed to the interpretation of the findings.

Corresponding author

Correspondence to Yueming (Lucy) Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Figs. 1–8, Tables 1–17 and refs. 1–21.

Source data

Source Data Fig. 1

Data points on Figure 1.

Source Data Fig. 2

Data points on Figure 2.

Source Data Fig. 3

Data points on Figure 3a–f.

Source Data Fig. 4

Data points on Figure 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Liu, P., Qiu, Y. et al. Estimation of change in house sales prices in the United States after heat pump adoption. Nat Energy (2020).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing