Peer influence on household energy behaviours


Studies across multiple disciplines demonstrate the importance of peers in shaping energy-related behaviours. Research on this process is wide ranging, from documenting spatial peer effects in the adoption of rooftop solar—when an individual’s behaviour is influenced by the behaviours of neighbours—to showing how neighbour comparisons can be used to reduce household electricity consumption. However, gaps exist in our understanding of how and why these peer effects occur. In this Review, we examine recent findings on social influence in energy behaviour and discuss pathways through which social influence can result in peer effects. We propose a conceptual framework for predicting which social influence processes will most often result in peer effects, depending on the targeted energy behaviour. We also review the limitations of social influence as well as evidence for when it is expected to be the strongest.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pathways to peer effects.
Fig. 2: Examples of factors that influence peer effects in energy behaviour.


  1. 1.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Article  Google Scholar 

  2. 2.

    Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C. & Vandenbergh, M. P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl Acad. Sci. USA 106, 18452–18456 (2009).

    Article  Google Scholar 

  3. 3.

    Stern, P. C. et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations. Nat. Energy 1, 16043 (2016).

    Article  Google Scholar 

  4. 4.

    Dixon, R. K., McGowan, E., Onysko, G. & Scheer, R. M. US energy conservation and efficiency policies: Challenges and opportunities. Energy Policy 38, 6398–6408 (2010).

    Article  Google Scholar 

  5. 5.

    Sangroya, D. & Nayak, J. K. Factors influencing buying behaviour of green energy consumer. J. Clean. Prod. 151, 393–405 (2017).

    Article  Google Scholar 

  6. 6.

    Schultz, P. W., Estrada, M., Schmitt, J., Sokoloski, R. & Silva-Send, N. Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms. Energy 90, 351–358 (2015).

    Article  Google Scholar 

  7. 7.

    Sintov, N. D. & Schultz, P. W. Unlocking the potential of smart grid technologies with behavioral science. Front. Psychol. 6, article 410 (2015).

    Article  Google Scholar 

  8. 8.

    Stoll, P., Brandt, N. & Nordström, L. Including dynamic CO2 intensity with demand response. Energy Policy 65, 490–500 (2014).

    Article  Google Scholar 

  9. 9.

    Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. Normative social influence is underdetected. Pers. Soc. Psychol. Bull. 34, 913–923 (2008). A study showing the influence of normative information on household electricity consumption, and the tendency for individuals to underestimate this influence.

    Article  Google Scholar 

  10. 10.

    Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Change 23, 1773–1785 (2013). A meta-analysis on social influence interventions to encourage environmental resource conservation.

    Article  Google Scholar 

  11. 11.

    Pettifor, H., Wilson, C., Axsen, J., Abrahamse, W. & Anable, J. Social influence in the global diffusion of alternative fuel vehicles – a meta-analysis. J. Transp. Geogr. 62, 247–261 (2017). A meta-analysis on interpersonal communication, neighbourhood effects and normative social influence on alternative fuel vehicle purchasing and purchase intentions.

    Article  Google Scholar 

  12. 12.

    Axsen, J. & Kurani, K. S. Social influence, consumer behavior, and low-carbon energy transitions. Annu. Rev. Environ. Resour. 37, 311–340 (2012).

    Article  Google Scholar 

  13. 13.

    Sacerdote, B. Experimental and quasi-experimental analysis of peer effects: two steps forward? Annu. Rev. Econom. 6, 253–272 (2014).

    MathSciNet  Article  Google Scholar 

  14. 14.

    Narayanan, S. & Nair, H. S. Estimating causal installed-base effects: a bias-correction approach. J. Mark. Res. 50, 70–94 (2013).

    Article  Google Scholar 

  15. 15.

    Cialdini, R. B. & Goldstein, N. J. Social influence: compliance and conformity. Annu. Rev. Psychol. 55, 591–621 (2004). An overview of the social influence research literature.

    Article  Google Scholar 

  16. 16.

    Graham, B. S. Identifying and estimating neighborhood effects. J. Econ. Lit. 56, 450–500 (2018).

    Article  Google Scholar 

  17. 17.

    Bailey, M., Johnston, D. M., Kuchler, T., Stroebel, J. & Wong, A. Peer effects in product adoption NBER Working Paper No. 25843 (National Bureau of Economic Research, 2019).

  18. 18.

    Bollinger, B. & Gillingham, K. Peer effects in the diffusion of solar photovoltaic panels. Mark. Sci. 31, 900–912 (2012). A study that demonstrates causal spatial peer effects in solar adoption in California.

    Article  Google Scholar 

  19. 19.

    Richter, L. L. Social Effects in the Diffusion of Solar Photovoltaic Technology in the UK CWPE 1357 & EPRG Working Paper 1332 (University of Cambridge, 2013);

  20. 20.

    Graziano, M. & Gillingham, K. Spatial patterns of solar photovoltaic system adoption: the influence of neighbors and the built environment. J. Econ. Geogr. 15, 815–839 (2015).

    Article  Google Scholar 

  21. 21.

    Müller, S. & Rode, J. The adoption of photovoltaic systems in Wiesbaden, Germany. Econ. Innov. New. Tech. 22, 519–535 (2013). A study showing spatial peer effects at a highly refined geographic level in a city in Germany.

    Article  Google Scholar 

  22. 22.

    Rode, J. & Weber, A. Does localized imitation drive technology adoption? A case study on rooftop photovoltaic systems in Germany. J. Environ. Econ. Manag. 78, 38–48 (2016).

    Article  Google Scholar 

  23. 23.

    Baranzini, A., Carattini, S. & Péclat, M. What Drives Social Contagion in The Adoption of Solar Photovoltaic Technology? (Grantham Research Institute on Climate Change and the Environment, 2017);

  24. 24.

    Bollinger, B., Gillingham, K., Kirkpatrick, A. J. & Sexton, S. Visibility and Peer Influence in Durable Good Adoption (SSRN, 2019);

  25. 25.

    Rode, J. & Müller, S. I Spot, I Adopt! A Discrete Choice Analysis on Peer Effects in Solar Photovoltaic System Adoption of Households (SSRN, 2019);

  26. 26.

    Carattini, S., Péclat, M. & Baranzini, A. Social Interactions and the Adoption of Solar PV: Evidence from Cultural Borders (Grantham Research Institute on Climate Change and the Environment, 2018). A study that shows spatial peer effects can be hindered by geographic borders, especially when there is a language barrier.

  27. 27.

    Graziano, M., Fiaschetti, M. & Atkinson-Palombo, C. Peer effects in the adoption of solar energy technologies in the United States: An urban case study. Energy Res. Soc. Sci. 48, 75–84 (2019).

    Article  Google Scholar 

  28. 28.

    Inhoffen, J., Siemroth, C. & Zahn, P. Minimum prices and social interactions: Evidence from the German renewable energy program. Energy Econ. 78, 350–364 (2019).

    Article  Google Scholar 

  29. 29.

    Goetzke, F. & Weinberger, R. Separating contextual from endogenous effects in automobile ownership models. Environ. Plan. A 44, 1032–1046 (2012).

    Article  Google Scholar 

  30. 30.

    Grinblatt, M., Keloharju, M. & Ikäheimo, S. Social influence and consumption: evidence from the automobile purchases of neighbors. Rev. Econ. Stat. 90, 735–753 (2008).

    Article  Google Scholar 

  31. 31.

    McShane, B. B., Bradlow, E. T. & Berger, J. Visual influence and social groups. J. Mark. Res. 49, 854–871 (2012).

    Article  Google Scholar 

  32. 32.

    Adjemian, M. K., Lin Lawell, C.-Y. C. & Williams, J. Estimating spatial interdependence in automobile type choice with survey data. Transp. Res. Part A Policy Pract. 44, 661–675 (2010).

    Article  Google Scholar 

  33. 33.

    Keith, D. R., Sterman, J. D. & Struben, J. Supply constraints and waitlists in new product diffusion. Syst. Dyn. Rev. 33, 254–279 (2018).

    Article  Google Scholar 

  34. 34.

    Heutel, G. & Muehlegger, E. Consumer learning and hybrid vehicle adoption. Environ. Resour. Econ. (Dordr.) 62, 125–161 (2015).

    Article  Google Scholar 

  35. 35.

    Zhu, X. & Liu, C. Investigating the neighborhood effect on hybrid vehicle adoption. Transp. Res. Rec. 2385, 37–44 (2013).

    Article  Google Scholar 

  36. 36.

    Jansson, J., Pettersson, T., Mannberg, A., Brännlund, R. & Lindgren, U. Adoption of alternative fuel vehicles: influence from neighbors, family and coworkers. Transp. Res. D. Transp. Environ. 54, 61–73 (2017).

    Article  Google Scholar 

  37. 37.

    Bonan, J. et al. Social Interaction and Technology Adoption: Experimental Evidence from Improved Cookstoves in Mali (Fondazione Eni Enrico Mattei, 2017);

  38. 38.

    Beltramo, T., Blalock, G., Levine, D. I. & Simons, A. M. Does peer use influence adoption of efficient cookstoves? Evidence from a randomized controlled trial in Uganda. J. Health Commun. 20, 55–66 (2015).

    Article  Google Scholar 

  39. 39.

    Miller, G. & Mobarak, A. M. Learning about new technologies through social networks: experimental evidence on nontraditional stoves in Bangladesh. Mark. Sci. 34, 480–499 (2014).

    Article  Google Scholar 

  40. 40.

    Carranza, E. & Meeks, R. Shedding Light: Understanding Energy Efficiency and Electricity Reliability World Bank Policy Research Working Paper No. 7891 (SSRN, 2016);

  41. 41.

    Rai, V. & Robinson, S. A. Effective information channels for reducing costs of environmentally-friendly technologies: Evidence from residential PV markets. Environ. Res. Lett. 8, 014044 (2013). A study examining the impact of active and passive peer effects on the time period for getting rooftop solar.

    Article  Google Scholar 

  42. 42.

    Rai, V., Reeves, D. C. & Margolis, R. Overcoming barriers and uncertainties in the adoption of residential solar PV. Renew. Energy 89, 498–505 (2016).

    Article  Google Scholar 

  43. 43.

    Palm, A. Peer effects in residential solar photovoltaics adoption—A mixed methods study of Swedish users. Energy Res. Soc. Sci. 26, 1–10 (2017).

    Article  Google Scholar 

  44. 44.

    Hogg, M. Influence and leadership. in Handbook of social psychology (eds. Fiske, S., Gilbert, D. & Lindzey, G.) 1166–1207 (Wiley, 2010).

  45. 45.

    Rogers, E. M. Diffusion of Innovations 5th Edition (Simon and Schuster, 2003).

  46. 46.

    Bandura, A. Social Learning Theory (Prentice Hall, 1977).

  47. 47.

    Aronson, E. & O’Leary, M. The relative effectiveness of models and prompts on energy conservation: a field experiment in a shower room. J. Environ. Syst. 12, 219–224 (1983).

    Article  Google Scholar 

  48. 48.

    Sussman, R., Greeno, M., Gifford, R. & Scannell, L. The effectiveness of models and prompts on waste diversion: a field experiment on composting by cafeteria patrons. J. Appl. Soc. Psychol. 43, 24–34 (2013).

    Article  Google Scholar 

  49. 49.

    Westbrook, R. A. Product/consumption-based affective responses and postpurchase processes. J. Mark. Res. 24, 258–270 (1987).

    Article  Google Scholar 

  50. 50.

    Bollinger, B., Gillingham, K., Lamp, S. & Tsvetanov, T. Promotional Campaign Duration and Word-Of-Mouth (SSRN, 2019).

  51. 51.

    Berger, J. Word of mouth and interpersonal communication: A review and directions for future research. J. Consum. Psychol. 24, 586–607 (2014).

    Article  Google Scholar 

  52. 52.

    Struben, J. & Sterman, J. D. Transition challenges for alternative fuel vehicle and transportation systems. Environ. Plann. B Plann. Des. 35, 1070–1097 (2008).

    Article  Google Scholar 

  53. 53.

    Lane, B. W. et al. All plug-in electric vehicles are not the same: predictors of preference for a plug-in hybrid versus a battery-electric vehicle. Transp. Res. D. Transp. Environ. 65, 1–13 (2018).

    Article  Google Scholar 

  54. 54.

    Granovetter, M. S. The strength of weak ties. AJS 78, 1360–1380 (1973).

    Google Scholar 

  55. 55.

    Weenig, M. W. & Midden, C. J. Communication network influences on information diffusion and persuasion. J. Pers. Soc. Psychol. 61, 734–742 (1991).

    Article  Google Scholar 

  56. 56.

    Zint, M. & Wolske, K. S. From information provision to participatory deliberation: engaging residents in the transition toward sustainable cities. in Elgar Companion to Sustainable Cities Strategies, Methods and Outlook (eds. Mazmanian, D. A. & Blanco, H.) 188–209 (Edward Elgar Publishing, Inc., 2014).

  57. 57.

    Bloodhart, B., Swim, J. K. & Zawadzki, M. J. Spreading the eco-message: using proactive coping to aid eco-rep behavior change programming. Sustainability 5, 1661–1679 (2013).

    Article  Google Scholar 

  58. 58.

    Noll, D., Dawes, C. & Rai, V. Solar community organizations and active peer effects in the adoption of residential PV. Energy Policy 67, 330–343 (2014).

    Article  Google Scholar 

  59. 59.

    Kraft-Todd, G. T., Bollinger, B., Gillingham, K., Lamp, S. & Rand, D. G. Credibility-enhancing displays promote the provision of non-normative public goods. Nature 563, 245–248 (2018).

    Article  Google Scholar 

  60. 60.

    Cialdini, R. B. & Trost, M. R. Social influence: social norms, conformity and compliance. in The handbook of social psychology 4th edn, Vols. 1–2 (eds Gilbert, D. T., Fiske, S. T & Lindzey, G.) 151–192 (McGraw-Hill, 1998).

  61. 61.

    Stiff, J. B. & Mongeau, P. A. Persuasive Communication (The Guilford Press, 2016).

  62. 62.

    Kumkale, G. T., Albarracín, D. & Seignourel, P. J. The effects of source credibility in the presence or absence of prior attitudes: implications for the design of persuasive communication campaigns. J. Appl. Soc. Psychol. 40, 1325–1356 (2010).

    Article  Google Scholar 

  63. 63.

    Cialdini, R. B. Basic social influence is underestimated. Psychol. Inq. 16, 158–161 (2005).

    Article  Google Scholar 

  64. 64.

    Schultz, P. W., Tabanico, J. J. & Rendón, T. Normative beliefs as agents of influence: basic processes and real-world applications. in Attitudes and attitude change 385–409 (Psychology Press, 2008).

  65. 65.

    McDonald, R. I. & Crandall, C. S. Social norms and social influence. Curr. Opin. Behav. Sci. 3, 147–151 (2015).

    Article  Google Scholar 

  66. 66.

    Nolan, J. M., Schultz, P. W., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. A social norms approach: wise interventions for solving environmental problems. in Handbook of wise interventions: How social-psychological insights can help solve problems (eds. Walton, G. M. & Crum, A.) (Guilford, in press).

  67. 67.

    Miller, D. T. & Prentice, D. A. Changing norms to change behavior. Annu. Rev. Psychol. 67, 339–361 (2016).

    Article  Google Scholar 

  68. 68.

    Neighbors, C., Larimer, M. E. & Lewis, M. A. Targeting misperceptions of descriptive drinking norms: efficacy of a computer-delivered personalized normative feedback intervention. J. Consult. Clin. Psychol. 72, 434–447 (2004).

    Article  Google Scholar 

  69. 69.

    Staats, H. J., Wit, A. P. & Midden, C. Y. H. Communicating the greenhouse effect to the public: evaluation of a mass media campaign from a social dilemma perspective. J. Environ. Manag. 46, 189–203 (1996).

    Article  Google Scholar 

  70. 70.

    Cialdini, R. B., Reno, R. R. & Kallgren, C. A. A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places. J. Pers. Soc. Psychol. 58, 1015–1026 (1990).

    Article  Google Scholar 

  71. 71.

    Cialdini, R. B. Crafting normative messages to protect the environment. Curr. Dir. Psychol. Sci. 12, 105–109 (2003).

    Article  Google Scholar 

  72. 72.

    Göckeritz, S. et al. Descriptive normative beliefs and conservation behavior: The moderating roles of personal involvement and injunctive normative beliefs. Eur. J. Soc. Psychol. 40, 514–523 (2010).

    Google Scholar 

  73. 73.

    Jacobson, R. P., Mortensen, C. R. & Cialdini, R. B. Bodies obliged and unbound: differentiated response tendencies for injunctive and descriptive social norms. J. Pers. Soc. Psychol. 100, 433–448 (2011).

    Article  Google Scholar 

  74. 74.

    Jacobson, R. P., Mortensen, C. R., Jacobson, K. J. L. & Cialdini, R. B. Self-control moderates the effectiveness of influence attempts highlighting injunctive social norms. Soc. Psychol. Personal. Sci. 6, 718–726 (2015).

    Article  Google Scholar 

  75. 75.

    Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms. Psychological Sci. 18, 429–434 (2007). A study showing the influence of descriptive normative information, and the differential response for people above and below the norm.

    Article  Google Scholar 

  76. 76.

    Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, N. J. & Griskevicius, V. The constructive, destructive, and reconstructive power of social norms: reprise. Perspect. Psychol. Sci. 13, 249–254 (2018).

    Article  Google Scholar 

  77. 77.

    Allcott, H. Social norms and energy conservation. J. Public Econ. 95, 1082–1095 (2011).

    Article  Google Scholar 

  78. 78.

    Ayres, I., Raseman, S. & Shih, A. Evidence from two large field experiments that peer comparison feedback can reduce residential energy usage. J. Law Econ. Organ. 29, 992–1022 (2013).

    Article  Google Scholar 

  79. 79.

    Allcott, H. & Rogers, T. The short-run and long-run effects of behavioral interventions: experimental evidence from energy conservation. Am. Econ. Rev. 104, 3003–3037 (2014).

    Article  Google Scholar 

  80. 80.

    Ferraro, P. J. & Price, M. K. Using nonpecuniary strategies to influence behavior: evidence from a large-scale field experiment. Rev. Econ. Stat. 95, 64–73 (2013).

    Article  Google Scholar 

  81. 81.

    Mitchell, D. L. & Chesnutt, T. W. Evaluation of East Bay Municipal Utility District’s Pilot of WaterSmart Home Water Reports (Alliance for Water Efficiency, 2013);

  82. 82.

    Schultz, P. W., Javey, S. & Sorokina, A. Social comparison as a tool to promote residential water conservation. Front. Water 1, 1–9 (2019).

    Article  Google Scholar 

  83. 83.

    Barth, M., Jugert, P. & Fritsche, I. Still underdetected—social norms and collective efficacy predict the acceptance of electric vehicles in Germany. Transp. Res. Part F. Traffic Psychol. Behav. 37, 64–77 (2016).

    Article  Google Scholar 

  84. 84.

    Jaeger, C. M. & Schultz, P. W. Coupling social norms and commitments: testing the underdetected nature of social influence. J. Environ. Psychol. 51, 199–208 (2017).

    Article  Google Scholar 

  85. 85.

    Allen, S., Dietz, T. & McCright, A. M. Measuring household energy efficiency behaviors with attention to behavioral plasticity in the United States. Energy Res. Soc. Sci. 10, 133–140 (2015).

    Article  Google Scholar 

  86. 86.

    Truelove, H. B. & Gillis, A. J. Perception of pro-environmental behavior. Glob. Environ. Change 49, 175–185 (2018).

    Article  Google Scholar 

  87. 87.

    Klöckner, C. A. & Nayum, A. Specific barriers and drivers in different stages of decision-making about energy efficiency upgrades in private homes. Front. Psychol. 7, (2016).

  88. 88.

    Klöckner, C. A. The dynamics of purchasing an electric vehicle – A prospective longitudinal study of the decision-making process. Transp. Res. Part F. Traffic Psychol. Behav. 24, 103–116 (2014).

    Article  Google Scholar 

  89. 89.

    Wolske, K. S. & Stern, P. C. Contributions of psychology to limiting climate change: opportunities through consumer behavior. in Psychology and Climate Change (eds. Clayton, S. & Manning, C.) 127–160 (Academic Press, 2018).

  90. 90.

    Delmas, M. A., Fischlein, M. & Asensio, O. I. Information strategies and energy conservation behavior: a meta-analysis of experimental studies from 1975 to 2012. Energy Policy 61, 729–739 (2013).

    Article  Google Scholar 

  91. 91.

    Karlin, B., Zinger, J. F. & Ford, R. The effects of feedback on energy conservation: a meta-analysis. Psychol. Bull. 141, 1205–1227 (2015).

    Article  Google Scholar 

  92. 92.

    Comin, D. & Rode, J. From Green Users to Green Voters (National Bureau of Economic Research, 2013);

  93. 93.

    Bollinger, B., Burkhardt, J. & Gillingham, K. Peer effects in water conservation: evidence from consumer migration. Am. Econ. J. Econ. Policy (in the press).

  94. 94.

    Manski, C. F. Identification of endogenous social effects: the reflection problem. Rev. Econ. Stud. 60, 531–542 (1993).

    MathSciNet  MATH  Article  Google Scholar 

  95. 95.

    Brock, W. A. & Durlauf, S. N. Discrete choice with social interactions. Rev. Econ. Stud. 68, 235–260 (2001).

    MathSciNet  MATH  Article  Google Scholar 

  96. 96.

    Clark, R. A. & Goldsmith, R. E. Interpersonal influence and consumer innovativeness. Int. J. Consum. Stud. 30, 34–43 (2006).

    Article  Google Scholar 

  97. 97.

    Seebauer, S. Why early adopters engage in interpersonal diffusion of technological innovations: an empirical study on electric bicycles and electric scooters. Transp. Res. Part A Policy Pract. 78, 146–160 (2015).

    Article  Google Scholar 

  98. 98.

    Faiers, A. & Neame, C. Consumer attitudes towards domestic solar power systems. Energy Policy 34, 1797–1806 (2006).

    Article  Google Scholar 

  99. 99.

    Labay, D. G. & Kinnear, T. C. Exploring the consumer decision process in the adoption of solar energy systems. J. Consum. Res. 8, 271–278 (1981).

    Article  Google Scholar 

  100. 100.

    Jansson, J. Consumer eco-innovation adoption: Assessing attitudinal factors and perceived product characteristics. Bus. Strategy Environ. 20, 192–210 (2011).

    Article  Google Scholar 

  101. 101.

    Brudermann, T., Reinsberger, K., Orthofer, A., Kislinger, M. & Posch, A. Photovoltaics in agriculture: a case study on decision making of farmers. Energy Policy 61, 96–103 (2013).

    Article  Google Scholar 

  102. 102.

    Korcaj, L., Hahnel, U. J. J. & Spada, H. Intentions to adopt photovoltaic systems depend on homeowners’ expected personal gains and behavior of peers. Renew. Energy 75, 407–415 (2015).

    Article  Google Scholar 

  103. 103.

    Wolske, K. S., Stern, P. C. & Dietz, T. Explaining interest in adopting residential solar photovoltaic systems in the United States: toward an integration of behavioral theories. Energy Res. Soc. Sci. 25, 134–151 (2017).

    Article  Google Scholar 

  104. 104.

    Wolske, K. S., Todd, A., Rossol, M., McCall, J. & Sigrin, B. Accelerating demand for residential solar photovoltaics: Can simple framing strategies increase consumer interest? Glob. Environ. Change 53, 68–77 (2018).

    Article  Google Scholar 

  105. 105.

    Wang, S., Fan, J., Zhao, D., Yang, S. & Fu, Y. Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model. Transportation 43, 123–143 (2016).

    Article  Google Scholar 

  106. 106.

    Hovland, C. I., Janis, I. L. & Kelley, H. H. Communication and Persuasion (Yale University Press, 1953).

  107. 107.

    Pornpitakpan, C. The persuasiveness of source credibility: a critical review of five decades’ evidence. J. Appl. Soc. Psychol. 34, 243–281 (2004).

    Article  Google Scholar 

  108. 108.

    Petty, R. E. & Cacioppo, J. T. Communication and persuasion: central and peripheral routes to attitude change (Springer-Verlag, 1986).

  109. 109.

    Rimal, R. N. & Real, K. How behaviors are influenced by perceived norms: a test of the theory of normative social behavior. Communic. Res. 32, 389–414 (2005).

    Article  Google Scholar 

  110. 110.

    Kredentser, M. S., Fabrigar, L. R., Smith, S. M. & Fulton, K. Following what people think we should do versus what people actually do: elaboration as a moderator of the impact of descriptive and injunctive norms. Soc. Psychol. Personal. Sci. 3, 341–347 (2012).

    Article  Google Scholar 

  111. 111.

    Pellerano, J. A., Price, M. K., Puller, S. L. & Sánchez, G. E. Do extrinsic incentives undermine social norms? Evidence from a field experiment in energy conservation. Environ. Resour. Econ. 67, 413–428 (2017).

    Article  Google Scholar 

  112. 112.

    Mortensen, C. R. et al. Trending norms: a lever for encouraging behaviors performed by the minority. Soc. Psychol. Personal. Sci. 10, 201–210 (2019).

    Article  Google Scholar 

  113. 113.

    Sparkman, G. & Walton, G. M. Dynamic norms promote sustainable behavior, even if it is counternormative. Psychol. Sci. 28, 1663–1674 (2017). A study showing that people conform to information that others’ behaviour is changing (dynamic norms).

    Article  Google Scholar 

  114. 114.

    Schultz, P. W. Changing behavior with normative feedback interventions: A field experiment on curbside recycling. Basic Appl. Soc. Psych. 21, 25 (1999).

    Article  Google Scholar 

  115. 115.

    Bergquist, M. & Nilsson, A. I saw the sign: promoting energy conservation via normative prompts. J. Environ. Psychol. 46, 23–31 (2016).

    Article  Google Scholar 

  116. 116.

    Locke, E. A. & Latham, G. P. New directions in goal-setting theory. Curr. Dir. Psychol. Sci. 15, 265–268 (2006).

    Article  Google Scholar 

  117. 117.

    Abrams, D., Wetherell, M., Cochrane, S., Hogg, M. A. & Turner, J. C. Knowing what to think by knowing who you are: self-categorization and the nature of norm formation, conformity and group polarization. Br. J. Soc. Psychol. 29, 97–119 (1990).

    Article  Google Scholar 

  118. 118.

    Costa, D. L. & Kahn, M. E. Do liberal home owners consume less electricity? A test of the voluntary restraint hypothesis. Econ. Lett. 119, 210–212 (2013).

    Article  Google Scholar 

  119. 119.

    Agerström, J., Carlsson, R., Nicklasson, L. & Guntell, L. Using descriptive social norms to increase charitable giving: the power of local norms. J. Econ. Psychol. 52, 147–153 (2016).

    Article  Google Scholar 

  120. 120.

    Goldstein, N. J., Cialdini, R. B. & Griskevicius, V. A room with a viewpoint: using social norms to motivate environmental conservation in hotels. J. Consum. Res. 35, 472–482 (2008).

    Article  Google Scholar 

  121. 121.

    DeDominicis, S., Sokoloski, R., Jaeger, C. & Schultz, P. W. Making the smart meter social promotes long-term energy conservation. Palgrave Commun. 5, 51 (2019).

    Article  Google Scholar 

Download references

Author information




All authors contributed equally to the conceptualization and writing of the paper.

Corresponding author

Correspondence to Kenneth T. Gillingham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolske, K.S., Gillingham, K.T. & Schultz, P.W. Peer influence on household energy behaviours. Nat Energy 5, 202–212 (2020).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing