Exploring the bottlenecks of anionic redox in Li-rich layered sulfides

Abstract

Anionic redox chemistry has emerged as a new paradigm to design higher-energy lithium ion-battery cathode materials such as Li-rich layered oxides. However, they suffer from voltage fade, large hysteresis and sluggish kinetics, which originate intriguingly from the anionic redox activity itself. To fundamentally understand these issues, we decided to act on the ligand by designing new Li-rich layered sulfides Li1.33 – 2y/3Ti0.67 – y/3FeyS2, among which the y = 0.3 member shows sustained reversible capacities of ~245 mAh g−1 due to cumulated cationic (Fe2+/3+) and anionic (S2−/Sn, n < 2) redox processes. Moreover, its negligible initial cycle irreversibility, mitigated voltage fade upon long cycling, low voltage hysteresis and fast kinetics compare positively with its Li-rich oxide analogues. Moving from the oxygen ligand to the sulfur ligand thus partially alleviates the practical bottlenecks affecting anionic redox, although it penalizes the redox potential and energy density. Overall, these sulfides provide chemical clues to improve the holistic performance of anionic redox electrodes, which may guide us to ultimately exploit the energy benefits of oxygen redox.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Moving from Li-rich layered oxides to sulfides.
Fig. 2: Structural behaviour of the Li1.33 – 2y/3Ti0.67 – y/3FeyS2 series.
Fig. 3: Electrochemical behaviour of Li1.33 – 2y/3Ti0.67 – y/3FeyS2.
Fig. 4: Structural evolution upon Li (de)intercalation.
Fig. 5: Spectroscopic characterizations to identify the redox processes.
Fig. 6: Li-rich layered sulfide as a model material to study the practicability of anionic redox.
Fig. 7: Correlating the experimental observations in Li1.33 – 2y/3Ti0.67 – y/3FeyS2 with theoretical calculations.

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding authors on reasonable request.

Change history

  • 17 December 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Blomgren, G. E. The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017).

    Article  Google Scholar 

  2. 2.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  Google Scholar 

  3. 3.

    Assat, G. & Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  Google Scholar 

  4. 4.

    Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  Google Scholar 

  5. 5.

    Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163, A2965–A2976 (2016).

    Article  Google Scholar 

  6. 6.

    Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  Google Scholar 

  7. 7.

    Xie, Y., Saubanère, M. & Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    Article  Google Scholar 

  8. 8.

    Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  9. 9.

    Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  Google Scholar 

  10. 10.

    Perez, A. J. et al. Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4. Nat. Energy 2, 954–962 (2017).

    Article  Google Scholar 

  11. 11.

    House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  Google Scholar 

  12. 12.

    Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  Google Scholar 

  13. 13.

    Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  14. 14.

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  Google Scholar 

  15. 15.

    Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. A Eur. J. 2, 1053–1059 (1996).

    Article  Google Scholar 

  16. 16.

    Rouxel, J. Some solid state chemistry with holes: anion–cation redox competition in solids. Curr. Sci. 73, 31–39 (1997).

    Google Scholar 

  17. 17.

    Britto, S. et al. Multiple redox modes in the reversible lithiation of high-capacity, Peierls-distorted vanadium sulfide. J. Am. Chem. Soc. 137, 8499–8508 (2015).

    Article  Google Scholar 

  18. 18.

    Brec, R., Prouzet, E. & Ouvrard, G. Redox processes in the LixFeS2/Li electrochemical system studied through crystal, Mössbauer and EXAFS analyses. J. Power Sources 26, 325–332 (1989).

    Article  Google Scholar 

  19. 19.

    Blandeaut, L., Ouvrardt, G., Calaget, Y., Brect, R. & Rouxelt, J. Transition-metal dichalcogenides from disintercalation processes. Crystal structure determination and Mossbauer study of Li2FeS2 and its disintercalates LixFeS2 (0.2 ≤ x ≤ 2). J. Phys. C Solid State Phys. 20, 4271–4281 (1987).

    Article  Google Scholar 

  20. 20.

    Onuki, Y., Inada, R., Tanuma, S., Yamanaka, S. & Kamimura, H. Electrochemical characteristics of transition-metal trichalcogenides in the secondary lithium battery. Solid State Ion. 11, 195–201 (1983).

    Article  Google Scholar 

  21. 21.

    Murphy, D. W. & Trumbore, F. A. Metal chalcogenides as reversible electrodes in nonaqueous lithium batteries. J. Cryst. Growth 39, 185–199 (1977).

    Article  Google Scholar 

  22. 22.

    Murphy, D. W. The chemistry of TiS3 and NbSe3 cathodes. J. Electrochem. Soc. 123, 960–964 (1976).

    Article  Google Scholar 

  23. 23.

    Whittingham, M. S. Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog. Solid State Chem. 12, 41–99 (1978).

    Article  Google Scholar 

  24. 24.

    Holleck, G. L. & Driscoll, J. R. Transition metal sulfides as cathodes for secondary lithium batteries—II. titanium sulfides. Electrochim. Acta 22, 647–655 (1977).

    Article  Google Scholar 

  25. 25.

    Whittingham, M. S. The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315–320 (1976).

    Article  Google Scholar 

  26. 26.

    Lindic, M. H. et al. XPS investigations of TiOySz amorphous thin films used as positive electrode in lithium microbatteries. Solid State Ion. 176, 1529–1537 (2005).

    Article  Google Scholar 

  27. 27.

    Goodenough, J. B. & Kim, Y. Locating redox couples in the layered sulfides with application to Cu[Cr2]S4. J. Solid State Chem. 182, 2904–2911 (2009).

    Article  Google Scholar 

  28. 28.

    Clark, S. J., Wang, D., Armstrong, A. R. & Bruce, P. G. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode. Nat. Commun. 7, 10898 (2016).

    Article  Google Scholar 

  29. 29.

    Tarascon, J. M., Disalvo, F. J., Eibschutz, M., Murphy, D. W. & Waszczak, J. V. Preparation and chemical and physical properties of the new layered phases LixTi1 − yMyS2 with M = V, Cr or Fe. Phys. Rev. B 28, 6397–6406 (1983).

    Article  Google Scholar 

  30. 30.

    Li, B. et al. Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries. Adv. Funct. Mater. 28, 1704864 (2018).

    Article  Google Scholar 

  31. 31.

    Lu, Z. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815–A822 (2002).

    Article  Google Scholar 

  32. 32.

    Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2. J. Electrochem. Soc. 149, A778–A791 (2002).

    Article  Google Scholar 

  33. 33.

    Lu, Z., MacNeil, D. D. & Dahn, J. R. Layered cathode materials Li[NixLi1/3 − 2x/3Mn2/3 − x/3]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191–A194 (2001).

    Article  Google Scholar 

  34. 34.

    Flamary-Mespoulie, F. Synthèse et caractérisation de sulfures de métaux de transition comme matériaux d’électrode positive à forte capacité pour microbatteries au lithium, PhD thesis, Univ. de Bordeaux (2016).

  35. 35.

    Shadike, Z. et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 8, 566 (2017).

    Article  Google Scholar 

  36. 36.

    Sakuda, A. et al. A reversible rocksalt to amorphous phase transition involving anion redox. Sci. Rep. 8, 15086 (2018).

    Article  Google Scholar 

  37. 37.

    Sakuda, A. et al. Rock-salt-type lithium metal sulphides as novel positive-electrode materials. Sci. Rep. 4, 2–6 (2014).

    Google Scholar 

  38. 38.

    Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  Google Scholar 

  39. 39.

    Furuseth, S., Brattås, L., Kjekshus, A., Andresen, A. F. & Fischer, P. On the crystal structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3 and HfSe3. Acta Chem. Scand. 29A, 623–631 (1975).

    Article  Google Scholar 

  40. 40.

    Fatseas, G. A. & Goodenough, J. B. Mössbauer 57Fe spectra exhibiting ‘ferrous character’. J. Solid State Chem. 33, 219–232 (1980).

    Article  Google Scholar 

  41. 41.

    Vaughan, D. J. & Ridout, M. S. Mössbauer studies of some sulphide minerals. J. Inorg. Nucl. Chem. 33, 741–746 (1971).

    Article  Google Scholar 

  42. 42.

    Zhang, L. et al. Tracking the chemical and structural evolution of the TiS2 electrode in the lithium-ion cell using operando X-ray absorption spectroscopy. Nano Lett. 18, 4506–4515 (2018).

    Article  Google Scholar 

  43. 43.

    Farrell, S. P. et al. Evolution of local electronic structure in alabandite and niningerite solid solutions [(Mn,Fe)S, (Mg,Mn)S, (Mg,Fe)S] using sulfur K- and L-edge XANES spectroscopy. Am. Mineral. 87, 1321–1332 (2002).

    Article  Google Scholar 

  44. 44.

    Mchael Bancrofi, G., Kasrai, M., Fleet, M. & Stn, C. S K- and L-edge X-ray absorption spectroscopy of metal sulfides and sulfates: applications in mineralogy and geochemistry. Can. Mineral. 33, 949–960 (1995).

    Google Scholar 

  45. 45.

    Fleet, M. E. XANES spectroscopy of sulfur in earth materials. Can. Mineral. 43, 1811–1838 (2005).

    Article  Google Scholar 

  46. 46.

    Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    Article  Google Scholar 

  47. 47.

    Fleet, M. E., Harmer, S. L., Liu, X. & Nesbitt, H. W. Polarized X-ray absorption spectroscopy and XPS of TiS3: S K- and Ti L-edge XANES and S and Ti 2p XPS. Surf. Sci. 584, 133–145 (2005).

    Article  Google Scholar 

  48. 48.

    Martinez, H. et al. Influence of the cation nature of high sulfur content oxysulfide thin films MOySz (M = W, Ti) studied by XPS. Appl. Surf. Sci. 236, 377–386 (2004).

    Article  Google Scholar 

  49. 49.

    Strehle, B. et al. The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017).

    Article  Google Scholar 

  50. 50.

    Boultif, A. & Louer, D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Cryst. 24, 987–993 (1991).

    Article  Google Scholar 

  51. 51.

    Rodríguez-Carvajal, J. FullProf Suite; http://www.ill.eu/sites/fullprof

  52. 52.

    Chamas, M., Sougrati, M.-T., Reibel, C. & Lippens, P.-E. Quantitative analysis of the initial restructuring step of nanostructured FeSn2-based anodes for Li-ion batteries. Chem. Mater. 25, 2410–2420 (2013).

    Article  Google Scholar 

  53. 53.

    Fehse, M. et al. The electrochemical sodiation of FeSb2: new insights from operando 57Fe synchrotron Mössbauer and X-ray absorption spectroscopy. Batter. Supercaps 2, 66–73 (2019).

    Article  Google Scholar 

  54. 54.

    X-ray Data Booklet (Lawrence Berkeley National Laboratory, 2009); http://xdb.lbl.gov/xdb-new.pdf

  55. 55.

    Qiao, R. et al. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the advanced light source. Rev. Sci. Instrum. 88, 033106 (2017).

    Article  Google Scholar 

  56. 56.

    Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714 (1972).

    Article  Google Scholar 

  57. 57.

    Scofield, J. H. Hartree–Slater subshell photoionization cross-sections at 1,254 and 1,487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976).

    Article  Google Scholar 

  58. 58.

    Ping Ong, S. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

  59. 59.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  60. 60.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  61. 61.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  Google Scholar 

  62. 62.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

S.S. thanks the Réseau sur le Stockage Electrochimique de l’Energie (RS2E) for funding of a PhD. J.-M.T. acknowledges funding from the European Research Council (ERC) under (FP/2014)/ERC grant–project 670116-ARPEMA. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract no. DE-AC02-06CH11357. The sXAS and mRIXS experiments at BL8.0.1 used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. V. Pumjakushin is acknowledged for his help on neutron diffraction experiment at SINQ. The authors thank M. Saubanère and M.-L. Doublet for fruitful discussions and the laboratory Chimie Théorique Methodes and Modélisaion (CTMM) at the Institut Claude Gerhardt Montpellier (ICGM) for computational facilities. J.C. and H.L. were supported by the National Science Foundation under grant no. DMR-1809372.

Author information

Affiliations

Authors

Contributions

S.S., G.A. and J.-M.T. conceived the idea and designed the experiments. S.S. carried out the synthesis. S.S., G.A. and S.T. performed the electrochemical studies. S.S. and G.R. performed the diffraction experiments and analysis. M.T.S. collected and analysed the Mössbauer spectra. H.L. performed the XAS experiments, and H.L., J.C. and S.S. interpreted the spectra. A.M.A. conducted and analysed the TEM and EELS studies. W.Y. and Y.H. performed the sXAS and mRIXS studies. D.F. conducted the XPS studies. J.V. conducted the DFT studies. S.S., G.A. and J.-M.T. wrote the manuscript. All authors discussed the experiments and edited the manuscript.

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Notes 1–3, Supplementary Tables 1–5 and refs. 1–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Assat, G., Sougrati, M.T. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat Energy 4, 977–987 (2019). https://doi.org/10.1038/s41560-019-0493-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing