Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents


Carbonate electrolytes are commonly used in commercial non-aqueous Li-ion batteries. However, the high affinity between the solvents and the ions and high flammability of the carbonate electrolytes limits the battery operation temperature window to −20 to + 50 °C and the voltage window to 0.0 to 4.3 V. Here, we tame the affinity between solvents and Li ions by dissolving fluorinated electrolytes into highly fluorinated non-polar solvents. In addition to their non-flammable characteristic, our electrolytes enable high electrochemical stability in a wide voltage window of 0.0 to 5.6 V, and high ionic conductivities in a wide temperature range from −125 to + 70 °C. We show that between −95 and + 70 °C, the electrolytes enable LiNi0.8Co0.15Al0.05O2 cathodes to achieve high Coulombic efficiencies of >99.9%, and the aggressive Li anodes and the high-voltage (5.4 V) LiCoMnO4 to achieve Coulombic efficiencies of >99.4% and 99%, respectively. Even at −85 °C, the LiNi0.8Co0.15Al0.05O2 || Li battery can still deliver ~50% of its room-temperature capacity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrolyte design strategy and the properties.
Fig. 2: Physical properties and simulated structure of the superelectrolytes.
Fig. 3: Li-ion solvation/desolvation energy in different electrolytes and the interphase analysis.
Fig. 4: Electrochemical performance of NCA || Li cells using different electrolytes at different temperatures.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (1976).

    Article  Google Scholar 

  2. 2.

    Cheng, X. B., Zhao, C. Z., Yao, Y. X., Liu, H. & Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium metal anodes. Chem 5, 74–96 (2019).

    Article  Google Scholar 

  3. 3.

    Assat, G. & Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  Google Scholar 

  4. 4.

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  5. 5.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  6. 6.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  7. 7.

    Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    Article  Google Scholar 

  8. 8.

    Zhu, C., Usiskin, R. E., Yu, Y. & Maier, J. The nanoscale circuitry of battery electrodes. Science 358, eaao2808 (2017).

    Article  Google Scholar 

  9. 9.

    Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018).

    Article  Google Scholar 

  10. 10.

    Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  11. 11.

    Noorden, R. V. The rechargeable revolution: a better battery. Nature 507, 26–28 (2014).

    Article  Google Scholar 

  12. 12.

    Yang, X.-G., Zhang, G., Ge, S. & Wang, C.-Y. Fast charging of lithium-ion batteries at all temperatures. Proc. Natl Acad. Sci. USA 115, 7266–7271 (2018).

    Article  Google Scholar 

  13. 13.

    Zhang, S. S., Xu, K. & Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 4, 928–932 (2002).

    Article  Google Scholar 

  14. 14.

    Smart, M. C., Whitacre, J. F., Ratnakumar, B. V. & Amine, K. Electrochemical performance and kinetics of Li1 + x(Co1/3Ni1/3Mn1/3)1 − xO2 cathodes and graphite anodes in low-temperature electrolytes. J. Power Sources 168, 501–508 (2007).

    Article  Google Scholar 

  15. 15.

    Stuart, T. A. & Hande, A. HEV battery heating using AC currents. J. Power Sources 129, 368–378 (2004).

    Article  Google Scholar 

  16. 16.

    Wang, C.-Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Article  Google Scholar 

  17. 17.

    Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, aal4263 (2017).

    Article  Google Scholar 

  18. 18.

    Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).

    Article  Google Scholar 

  19. 19.

    Dong, X. et al. High energy rechargeable metallic lithium battery at −70 °C enabled by a co-solvent electrolyte. Angew. Chem. 131, 5679–5683 (2019).

    Article  Google Scholar 

  20. 20.

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  21. 21.

    Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  Google Scholar 

  22. 22.

    Ramakumar, S., Satyanarayana, L., Manorama, S. V. & Murugan, R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys. 15, 11327–11338 (2013).

    Article  Google Scholar 

  23. 23.

    Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  Google Scholar 

  24. 24.

    Croce, F., Focarete, M. L., Hassoun, J., Meschini, I. & Scrosati, B. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ. Sci. 4, 921–927 (2011).

    Article  Google Scholar 

  25. 25.

    Gu, G. Y. et al. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 45, 3127–3139 (2000).

    Article  Google Scholar 

  26. 26.

    Miara, L. J., Richards, W. D., Wang, Y. E. & Ceder, G. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015).

    Article  Google Scholar 

  27. 27.

    Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  Google Scholar 

  28. 28.

    Hamon, Y. et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion. 177, 257–261 (2006).

    Article  Google Scholar 

  29. 29.

    Dudney, N. J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J. Power Sources 89, 176–179 (2000).

    Article  Google Scholar 

  30. 30.

    Cini, R. & Torrini, M. Temperature dependence of the magnetic susceptibility of water. J. Chem. Phys. 49, 2826–2830 (1968).

    Article  Google Scholar 

  31. 31.

    Skarmoutsos, I., Ponnuchamy, V., Vetere, V. & Mossa, S. Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes. J. Phys. Chem. C 119, 4502–4515 (2015).

    Article  Google Scholar 

  32. 32.

    Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  33. 33.

    Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016).

    Article  Google Scholar 

  34. 34.

    Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  35. 35.

    Bi, K., Zhao, S. X., Huang, C. & Nan, C. W. Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O. J. Power Sources 389, 240–248 (2018).

    Article  Google Scholar 

  36. 36.

    Fetcenko, M. A. et al. Recent advances in NiMH battery technology. J. Power Sources 165, 544–551 (2007).

    Article  Google Scholar 

  37. 37.

    Evarts, E. C. Lithium batteries: to the limits of lithium. Nature 526, S93 (2015).

    Article  Google Scholar 

  38. 38.

    Xu, K., Zhang, S., Allen, J. L. & Jow, T. R. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J. Electrochem. Soc. 149, A1079–A1082 (2002).

    Article  Google Scholar 

  39. 39.

    Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  40. 40.

    Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

    Article  Google Scholar 

  41. 41.

    Han, F. et al. Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018).

    Article  Google Scholar 

  42. 42.

    Chen, L. et al. Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery. Chem 5, 896–912 (2019).

    Article  Google Scholar 

  43. 43.

    Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    Article  Google Scholar 

  44. 44.

    Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  Google Scholar 

  45. 45.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  46. 46.

    Frisch, M. J. et al. Gaussian 09, Rev E. 01. Wallingford CT: Gaussian, Inc. (2013).

  47. 47.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    MathSciNet  Article  Google Scholar 

  48. 48.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  Google Scholar 

  49. 49.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    MathSciNet  Article  Google Scholar 

  50. 50.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  Google Scholar 

  51. 51.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

  52. 52.

    Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Article  Google Scholar 

  53. 53.

    Jakalian, A., Bush, B. L., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).

    Article  Google Scholar 

  54. 54.

    Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    Article  Google Scholar 

  55. 55.

    Chen, F. & Forsyth, M. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts. Phys. Chem. Chem. Phys. 18, 19336–19344 (2016).

    Article  Google Scholar 

  56. 56.

    Shimizu, K., Almantariotis, D., Gomes, M. F. C., Pádua, A. A. H. & Canongia Lopes, J. N. Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2- methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010).

    Article  Google Scholar 

  57. 57.

    Tsuzuki, S. et al. Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J. Phys. Chem. B 113, 10641–10649 (2009).

    Article  Google Scholar 

  58. 58.

    Borodin, O. et al. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry. Phys. Chem. Chem. Phys. 18, 164–175 (2016).

    Article  Google Scholar 

  59. 59.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  60. 60.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  61. 61.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

Download references


This work was supported by the US Department of Energy (DOE) under award number DEEE0008202. The authors acknowledge the University of Maryland supercomputing resources ( made available for conducting the research reported in this paper.

Author information




X.F., X.J. and Long Chen designed the experiments and analysed data. X.F., L.C., J.C., T.D., N.P., X.X. and Lixin Chen conducted the electrochemical experiments. X.J. and R.W. conducted the calculations. X.F. and J.C. performed the XPS and Raman analysis. F.H. and J.Y. synthesized the solid-state electrolytes. X.Z. conducted the MPMS analysis. X.F. wrote the draft manuscript. X.F., X.J., Long Chen and C.W. revised the manuscript. C.W. conceived and supervised the project. All the authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Chunsheng Wang.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Tables 1–2 and Figs. 1–24.

Supplementary Video 1

Electric fan powered by the NCA || Li pouch cell using 1.28 M LiFSI-FEC/FEMC–D2 electrolyte at −95 °C.

Supplementary Video 2

Flammability test for the conventional 1 M LiPF6-EC/DMC electrolyte.

Supplementary Video 3

Flammability test for the water-in-salt electrolyte.

Supplementary Video 4

Flammability test for the superelectrolyte (1.28 M LiFSI-FEC/FEMC–D2).

Supplementary Video 5

Flammability test for the Li3PS4 solid-state electrolyte.

Supplementary Video 6

Flammability test for the Li10GeP2S12 solid-state electrolyte.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Ji, X., Chen, L. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy 4, 882–890 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing