Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Germany’s decision to phase out coal by 2038 lags behind citizens’ timing preferences

Abstract

Coal-fired power generation is the single most important source of carbon dioxide emissions in many countries, including Germany. A government commission recently proposed to phase out coal by 2038, which implies that the country will miss its 2020 climate target. On the basis of a choice experiment that assessed 31,744 hypothetical policy scenarios in a representative sample of German voters, we show that voters prefer a phase-out by 2025. They would uphold their support for greater climate ambition up to an additional cost to society of €8.5 billion. Voters in Rhineland and Lusatia, the country’s main coal regions, also support an earlier phase-out, but to a lesser extent than voters in other regions. By demonstrating that political decision-makers are more reluctant than voters in overcoming energy path dependence, our analysis calls for further research to explain the influence of particular stakeholders in slowing energy transitions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Share of coal in German electricity mix and energy-related greenhouse gas emissions, 1990–2018.
Fig. 2: Average effects of policy attributes on respondents’ preferences for a coal phase-out.
Fig. 3: Average effects of the timing attribute on respondents’ preference for a coal phase-out.
Fig. 4: Average effects of the timing attribute on respondents’ preference for a coal phase-out in Rhineland and Lusatia.
Fig. 5: Composition of the Commission on Growth, Structural Change and Employment.

Data availability

Replication data for the study are available in the Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/TEFCBL63.

Code availability

Replication code for the study is available in the Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/TEFCBL63.

References

  1. 1.

    McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).

    Article  Google Scholar 

  2. 2.

    Hansen, J. et al. Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008).

    Article  Google Scholar 

  3. 3.

    Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  4. 4.

    BP Statistical Review of World Energy (BP, 2018).

  5. 5.

    Pfeiffer, A., Hepburn, C., Vogt-Schilb, A. & Caldecott, B. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement. Environ. Res. Lett. 13, 054019 (2018).

    Article  Google Scholar 

  6. 6.

    Fri, R. W. & Savitz, M. L. Rethinking energy innovation and social science. Energy Res. Soc. Sci. 1, 183–187 (2014).

    Article  Google Scholar 

  7. 7.

    Rogge, K. S., Kern, F. & Howlett, M. Conceptual and empirical advances in analysing policy mixes for energy transitions. Energy Res. Soc. Sci. 33, 1–10 (2017).

    Article  Google Scholar 

  8. 8.

    Montt, G. et al. Does climate action destroy jobs? An assessment of the employment implications of the 2-degree goal. Int. Labour Rev. 157, 519–556 (2018).

    Article  Google Scholar 

  9. 9.

    Tvinnereim, E. & Ivarsflaten, E. Fossil fuels, employment, and support for climate policies. Energy Policy 96, 364–371 (2016).

    Article  Google Scholar 

  10. 10.

    Morton, T. & Müller, K. Lusatia and the coal conundrum: the lived experience of the German Energiewende. Energy Policy 99, 277–287 (2016).

    Article  Google Scholar 

  11. 11.

    Kuchler, M. & Bridge, G. Down the black hole: sustaining national socio-technical imaginaries of coal in Poland. Energy Res. Soc. Sci. 41, 136–147 (2018).

    Article  Google Scholar 

  12. 12.

    Carley, S., Evans, T. P. & Konisky, D. M. Adaptation, culture, and the energy transition in American coal country. Energy Res. Soc. Sci. 37, 133–139 (2017).

    Article  Google Scholar 

  13. 13.

    IPCC: Summary for Policymakers. In Global Warming of 1.5°C. (eds Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).

  14. 14.

    Renn, O. & Marshall, J. P. Coal, nuclear and renewable energy policies in Germany: from the 1950s to the “Energiewende”. Energy Policy 99, 224–232 (2016).

    Article  Google Scholar 

  15. 15.

    Lauber, V. & Jacobsson, S. In The Triple Challenge for Europe: Economic Development, Climate Change, and Governance (eds Fagerberg, J., Laestadius, S. & Martin, B. R.) 173–203 (Oxford Univ. Press, 2015).

  16. 16.

    Wronski, R. & Fiedler, S. Was Strom wirklich kostet: Vergleich der staatlichen Förderungen und gesamtgesellschaftlichen Kosten von konventionellen und erneuerbaren Energien (Forum Ökologisch-Soziale Marktwirtschaft e.V., 2017); https://www.greenpeace-energy.de/fileadmin/docs/publikationen/Studien/2017-10-Was_Strom_wirklich_kostet_lang.pdf

  17. 17.

    Wüstenhagen, R. & Bilharz, M. Green energy market development in Germany: effective public policy and emerging customer demand. Energy Policy 34, 1681–1696 (2006).

    Article  Google Scholar 

  18. 18.

    Energiebilanzen, A.G. Bruttostromerzeugung in Deutschland ab 1990 nach Energieträgern. http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=20161216_brd_stromerzeugung1990-2016.pdf (2019).

  19. 19.

    IPCC Renewable Energy Sources and Climate Change Mitigation (Cambridge Univ. Press, 2011).

  20. 20.

    Laird, F. N. in Germany’s Energy Transition: A Comparative Perspective (eds Hager, C. & Stefes, C.) 111–131 (Palgrave Macmillan, 2016).

  21. 21.

    Meckling, J., Kelsey, N., Biber, E. & Zysman, J. Winning coalitions for climate policy. Science 349, 1170–1171 (2015).

    Article  Google Scholar 

  22. 22.

    Fraune, C. & Knodt, M. Sustainable energy transformations in an age of populism, post-truth politics, and local resistance. Energy Res. Soc. Sci. 43, 1–7 (2018).

    Article  Google Scholar 

  23. 23.

    Lockwood, M. Right-wing populism and the climate change agenda: exploring the linkages. Env. Polit. 27, 712–732 (2018).

    Article  Google Scholar 

  24. 24.

    Bundesministerium für Wirtschaft und Energie Abschlussbericht, Kommission “Wachstum, Strukturwandel und Beschäftigung” (Bundesministerium für Wirtschaft und Energie, 2019).

  25. 25.

    Deutsche Bundesregierung Klimaschutzplan 2050: Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung (Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, 2016).

  26. 26.

    Hainmueller, J., Hopkins, D. J. & Yamamoto, T. Causal inference in conjoint analysis: understanding multidimensional choices via stated preference experiments. Polit. Anal. 22, 1–30 (2013).

    Article  Google Scholar 

  27. 27.

    Dharshing, S., Hille, S. L. & Wüstenhagen, R. The influence of political orientation on the strength and temporal persistence of policy framing effects. Ecol. Econ. 142, 295–305 (2017).

    Article  Google Scholar 

  28. 28.

    Stokes, L. C. & Warshaw, C. Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2, 17107 (2017).

    Article  Google Scholar 

  29. 29.

    Leipprand, A. & Flachsland, C. Regime destabilization in energy transitions: the German debate on the future of coal. Energy Res. Soc. Sci. 40, 190–204 (2018).

    Article  Google Scholar 

  30. 30.

    Huneke, F. & Niggemeier, M.-L. Jamaica and the coal. Energy BrainPool https://blog.energybrainpool.com/en/jamaica-and-the-coal-energy-market-2-0-passes-functioning-test/ (2018).

  31. 31.

    Setton, D., Matuschke, I. & Renn, O. Soziales Nachhaltigkeitsbarometer der Energiewende 2017 (Institute for Advanced Sustainability Studies e.V., 2017).

  32. 32.

    Mehrheit wünscht sich möglichst schnellen Braunkohle-Ausstieg. Infratest Dimap https://www.infratest-dimap.de/umfragen-analysen/bundesweit/umfragen/aktuell/mehrheit-wuenscht-sich-moeglichst-schnellen-braunkohle-ausstieg/ (2019).

  33. 33.

    Cook, J., Lewandowsky, S. & Ecker, U. K. H. Neutralizing misinformation through inoculation: exposing misleading argumentation techniques reduces their influence. PLoS ONE 12, e0175799 (2017).

    Article  Google Scholar 

  34. 34.

    Ding, D., Maibach, E. W., Zhao, X., Roser-Renouf, C. & Leiserowitz, A. Support for climate policy and societal action are linked to perceptions about scientific agreement. Nat. Clim. Change 1, 462–466 (2011).

    Article  Google Scholar 

  35. 35.

    Lewandowsky, S., Oberauer, K. & Gignac, G. E. NASA faked the moon landing-therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science. Psychol. Sci. 24, 622–633 (2013).

    Article  Google Scholar 

  36. 36.

    van der Linden, S., Maibach, E. & Leiserowitz, A. Improving public engagement with climate change: five “best practice” insights from psychological science. Perspect. Psychol. Sci. 10, 758–763 (2015).

    Article  Google Scholar 

  37. 37.

    Cook, J. et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, 048002 (2016).

    Article  Google Scholar 

  38. 38.

    Leiserowitz, A. et al. Climate Change in the American Mind: March 2018 (Yale Univ. and George Mason Univ., 2018).

  39. 39.

    Davidson, D. J. Exnovating for a renewable energy transition. Nat. Energy 4, 254–256 (2019).

    Article  Google Scholar 

  40. 40.

    Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. Sociotechnical transitions for deep decarbonization. Science 357, 1242–1244 (2017).

    Article  Google Scholar 

  41. 41.

    Heyen, D. A., Hermwille, L. & Wehnert, T. Out of the comfort zone! Governing the exnovation of unsustainable technologies and practices. Gaia 26, 326–331 (2017).

    Article  Google Scholar 

  42. 42.

    Kivimaa, P. & Kern, F. Creative destruction or mere niche support? Innovation policy mixes for sustainability transitions. Res. Policy 45, 205–217 (2016).

    Article  Google Scholar 

  43. 43.

    Turnheim, B. & Geels, F. W. Regime destabilisation as the flipside of energy transitions: lessons from the history of the British coal industry, 1913–1997. Energy Policy 50, 35–49 (2012).

    Article  Google Scholar 

  44. 44.

    Broockman, D. E. & Skovron, C. Bias in perceptions of public opinion among American political elites. Am. Polit. Sci. Rev. 112, 542–563 (2018).

    Article  Google Scholar 

  45. 45.

    Hertel-Fernandez, A., Mildenberger, M. & Stokes, L. C. Legislative staff and representation in Congress. Am. Polit. Sci. Rev. 113, 1–18 (2019).

    Article  Google Scholar 

  46. 46.

    Breetz, H., Mildenberger, M. & Stokes, L. The political logics of clean energy transitions. Bus. Polit. 20, 492–522 (2018).

    Article  Google Scholar 

  47. 47.

    Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 3, 628–633 (2018).

    Article  Google Scholar 

  48. 48.

    Vona, F. Job losses and political acceptability of climate policies: why the ‘job-killing’ argument is so persistent and how to overturn it. Clim. Policy 19, 524–532 (2019).

    Article  Google Scholar 

  49. 49.

    Bechtel, M. M. & Scheve, K. F. Mass support for global climate agreements depends on institutional design. Proc. Natl Acad. Sci. USA 110, 13763–13768 (2013).

    Article  Google Scholar 

  50. 50.

    Gampfer, R., Bernauer, T. & Kachi, A. Obtaining public support for north-south climate funding: evidence from conjoint experiments in donor countries. Glob. Environ. Change 29, 118–126 (2014).

    Article  Google Scholar 

  51. 51.

    Kohleausstieg jetzt einleiten (Sachverständigenrat für Umweltfragen, 2017).

  52. 52.

    Matthes, D. F. C. et al. Zukunft Stromsystem: Kohleausstieg 2035 - Vom Ziel her denken (WWF Germany, 2017).

  53. 53.

    Pietroni, A., Fernahl, A., Perez Linkenheil, C., Niggemaier, M. & Huneke, F. Klimaschutz durch Kohleausstieg: Wie ein Ausstieg aus der Kohle Deutschlands Klimaziele erreichbar macht, ohne die Versorgungssicherheit zu gefährden (energy brainpool, 2017).

  54. 54.

    Höhne, N., Kuramochi, T., Sterl, S. & Röschel, L. Was bedeutet das Pariser Abkommen für den Klimaschutz in Deutschland? (NewClimate Institute, 2016).

  55. 55.

    Connolly, K. G7 leaders agree phase out fossil fuel use end of century. The Guardian https://www.theguardian.com/world/2015/jun/08/g7-leaders-agree-phase-out-fossil-fuel-use-end-of-century (2015).

  56. 56.

    Stratmann, K., Sigmund, T., Flauger, J. & Kersting, S. Streit um Enegiewende: Kohleausstieg entzweit die Wirtschaft. Handelsblatt https://www.handelsblatt.com/unternehmen/industrie/streit-um-enegiewende-kohleausstieg-entzweit-die-wirtschaft-/20550070.html (2017).

  57. 57.

    Ecke, J. Gutachten: Sozialverträgliche Ausgestaltung eines Kohlekonsenses (ver.di - Vereinte Dienstleistungsgewerkschaft / enervis energy advisors GmbH, 2016).

  58. 58.

    Elf Eckpunkte für einen Kohlekonsens. Konzept zur schrittweisen Dekarbonisierung des deutschen Stromsektors (Langfassung) Version 1.2 (Agora Energiewende, 2016).

  59. 59.

    O’Sullivan, M., Edler, D. & Lehr, U. Bruttobeschäftigung durch erneuerbare Energien in Deutschland und verringerte fossile Brennstoffimporte durch erneuerbare Energien und Energieeffizienz (Bundesministerium für Wirtschaft und Energie, 2016); https://www.bmwi.de/Redaktion/DE/Downloads/S-T/bruttobeschaeftigung-erneuerbare-energien-monitioringbericht-2015.pdf?__blob=publicationFile&v=11

  60. 60.

    Dehnen, N., Mattes, A. & Traber, T. Die Beschäftigungseffekte der Energiewende: Eine Expertise für den Bundesverband WindEnergie e.V. und die Deutsche Messe AG (Deutsches Institut für Wirtschaftsforschung, 2015).

  61. 61.

    DIW Glossar: Parteibindung. Deutsches Institut für Wirtschaftsforschung https://www.diw.de/de/diw_01.c.413409.de/presse/diw_glossar/parteibindung.html (2018).

  62. 62.

    Global Panel Book (Lightspeed, 2016); http://www.lightspeedresearch.com/wp-content/uploads/2016/09/Lightspeed_PanelBook_Q4_2016.pdf

  63. 63.

    Rinscheid, A. Replication data for: Germany’s decision to phase out coal by 2038 lags behind citizens’ timing preferences. Harvard Dataverse https://doi.org/10.7910/DVN/TEFCBL (2019).

  64. 64.

    Nationale Inventarberichte zum Deutschen Treibhausgasinventar 1990 bis 2017 (Stand 01/2019) (Umweltbundesamt, 2019).

Download references

Acknowledgements

We acknowledge support by the Andlinger Center for Energy and the Environment at Princeton University, the Swiss Center of Competence for Energy Research SCCER CREST, the Swiss National Science Foundation (grant no. P1SGP1_174939) and Greenpeace Germany, who funded data collection. Design of the research project and data analysis was the sole responsibility of the authors.

Author information

Affiliations

Authors

Contributions

A.R. designed the study and analysed the data. A.R. and R.W. wrote the paper.

Corresponding author

Correspondence to Adrian Rinscheid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–10, notes 1–2 and Figs. 1–2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rinscheid, A., Wüstenhagen, R. Germany’s decision to phase out coal by 2038 lags behind citizens’ timing preferences. Nat Energy 4, 856–863 (2019). https://doi.org/10.1038/s41560-019-0460-9

Download citation

Further reading

Search

Quick links