Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells


CdTe-based solar technology has achieved one of the lowest levelized costs of electricity among all energy sources as well as state-of-the-art field stability. Yet, there is still ample headroom to improve. For decades, mainstream technology has combined fast CdTe deposition with a CdCl2 anneal and Cu doping. The resulting defect chemistry is strongly compensated and limits the useful hole density to ~1014 cm−3, creating a ceiling for fill factor, photovoltage and efficiency. In addition, Cu easily changes energy states and diffuses spatially, creating a risk of instabilities that must be managed with care. Here, we demonstrate a significant shift by doping polycrystalline CdSexTe1 − x and CdTe films with As while removing Cu entirely from the solar cell. The absorber majority-carrier density is increased by orders of magnitude to 1016–1017 cm−3 without compromising the lifetime, and is coupled with a high photocurrent greater than 30 mA cm−2. We demonstrate pathways for fast dopant incorporation in polycrystalline thin films, improved stability and 20.8% solar cell efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of a state-of-the-art CdTe solar cell.
Fig. 2: Diffusion versus in situ doping of thin polycrystalline solar cells.
Fig. 3: As-doped Cu-free solar cell with 20.8% efficiency.
Fig. 4: Absorber hole densities and lifetime.
Fig. 5: The effect of As on GB potentials and recombination.
Fig. 6: Optoelectronic properties of the front interface and absorber.

Data availability

The data that support the plots within this article are available from the authors upon reasonable request.


  1. 1.

    Luque, A. & Hegedus, S. (eds) in Handbook of Photovoltaic Science and Engineering Ch. 13, 14 (Wiley, 2011).

  2. 2.

    Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  Google Scholar 

  3. 3.

    Antunez, P. D., Bishop, D. M., Luo, Y. & Haight, R. Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices. Nat. Energy 2, 884–890 (2017).

    Article  Google Scholar 

  4. 4.

    Kranz, L. et al. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nat. Commun. 4, 2306 (2013).

    Article  Google Scholar 

  5. 5.

    Mahabaduge, H. P. et al. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Appl. Phys. Lett. 106, 133501 (2015).

    Article  Google Scholar 

  6. 6.

    Reese, M. O. et al. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nat. Energy 3, 1002–1012 (2018).

    Article  Google Scholar 

  7. 7.

    Chen, S., Walsh, A., Gong, X. G. & Wei, S. H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013).

    Article  Google Scholar 

  8. 8.

    Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3 – xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  Google Scholar 

  9. 9.

    Marfaing, Y. Self compensation in II–VI semiconductors. Prog. Cryst. Growth Character. 4, 317–343 (1981).

    Article  Google Scholar 

  10. 10.

    Stanbery, B. J. Copper indium selenides and related materials for photovoltaic devices. Crit. Rev. Solid State Mater. Sci. 27, 73–117 (2002).

    Article  Google Scholar 

  11. 11.

    Krasikov, D. & Sankin, I. Defect interactions and the role of complexes in the CdTe solar cell absorber. J. Mater. Chem. A 5, 3503–3513 (2017).

    Article  Google Scholar 

  12. 12.

    Feldman, D., Hoskins, J. & Margolis, R. Q4 2017/Q1 2018 Solar Industry Update, NREL/PR-6A20-71493 (NREL, 2018); https://www.nrel.gov/docs/fy18osti/71493.pdf

  13. 13.

    Lazard’s Levelized Cost of Energy Analysis – Version 11.0; https://www.lazard.com/media/450337/lazard-levelized-cost-of-energy-version-110.pdf

  14. 14.

    Gloeckler, M., Sankin, I. & Zhao, Z. CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovolt. 3, 1389–1393 (2013).

    Article  Google Scholar 

  15. 15.

    Green, M. A. et al. Solar cell efficiency tables (version 52). Prog. Photovolt. 26, 427–436 (2017).

    Article  Google Scholar 

  16. 16.

    Kanevce, A., Reese, M. O., Barnes, T. M., Jensen, S. A. & Metzger, W. K. The roles of carrier concentration and interface, bulk and grain-boundary recombination for 25% efficient CdTe solar cells. J. Appl. Phys. 121, 214506 (2017).

    Article  Google Scholar 

  17. 17.

    Steiner, M. A. et al. Optical enhancement of the open-circuit voltage in high quality GaAs solar cells. J. Appl. Phys. 113, 123109 (2013).

    Article  Google Scholar 

  18. 18.

    Duenow, J. & Metzger, W. K. Back-surface recombination, electron reflectors and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study. J. Appl. Phys. 125, 053101 (2019).

    Article  Google Scholar 

  19. 19.

    Burst, J. M. et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 16015 (2016).

    Article  Google Scholar 

  20. 20.

    Zhao, Y. et al. Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%. Nat. Energy 1, 16067 (2016).

    Article  Google Scholar 

  21. 21.

    Metzger, W. K. et al. Time-resolved photoluminescence studies of CdTe solar cells. J. Appl. Phys. 94, 3549–3555 (2003).

    Article  Google Scholar 

  22. 22.

    Major, J. D., Treharne, R. E., Phillips, L. J. & Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 511, 334–337 (2014).

    Article  Google Scholar 

  23. 23.

    Moseley, J. et al. Luminescence methodology to determine grain-boundary, grain-interior and surface recombination in thin-film solar cells. J. Appl. Phys. 124, 113104 (2018).

    Article  Google Scholar 

  24. 24.

    Amarasinghe, M. et al. Obtaining large columnar CdTe grains and long lifetime on nanocrystalline CdSe, MgZnO or CdS layers. Adv. Energy Mater. 8, 1702666 (2018).

    Article  Google Scholar 

  25. 25.

    Gessert, T. A. et al. Dependence of carrier lifetime on Cu-contacting temperature and ZnTe:Cu thickness in CdS/CdTe thin film solar cells. Thin Solid Films 517, 2370–2373 (2009).

    Article  Google Scholar 

  26. 26.

    Wu, X. et al. Phase control of CuxTe film and its effects on CdS/CdTe solar cell. Thin Solid Films 515, 5798–5803 (2007).

    Article  Google Scholar 

  27. 27.

    Moore, A., Song, T. & Sites, J. Improved CdTe solar cell performance with an evaporated Te layer before the back contact. MRS Adv. 2, 3195–3201 (2017).

    Article  Google Scholar 

  28. 28.

    Mao, D., Wickersham, C. E. & Gloeckler, M. Measurement of chlorine concentrations at CdTe grain boundaries. IEEE J. Photovolt. 4, 1655–1658 (2014).

    Article  Google Scholar 

  29. 29.

    Harvey, S., Teeter, G., Moutinho, H. R. & Al-Jassim, M. M. Direct evidence of enhanced chlorine segregation at grain boundaries in polycrystalline CdTe thin films via three‐dimensional TOF‐SIMS imaging. Prog. Photovolt. 23, 838–846 (2015).

    Article  Google Scholar 

  30. 30.

    Major, J. D. et al. In-depth analysis of chloride treatments for thin-film CdTe solar cells. Nat. Commun. 7, 13231 (2016).

    Article  Google Scholar 

  31. 31.

    Mao, D., Blatz, G., Wickersham, C. E. Jr. & Gloeckler, M. Correlative impurity distribution analysis in cadmium telluride (CdTe) thin-film solar cells by ToF-SIMS 2D imaging. Sol. Energy Mater. Sol. Cells 157, 65–73 (2016).

    Article  Google Scholar 

  32. 32.

    Perrenoud, J. et al. A comprehensive picture of Cu doping in CdTe solar cells. J. Appl. Phys. 114, 174505 (2013).

    Article  Google Scholar 

  33. 33.

    Kuciauskas, D. et al. The impact of Cu on recombination in high voltage CdTe solar cells. Appl. Phys. Lett. 107, 243906 (2015).

    Article  Google Scholar 

  34. 34.

    Burst, J. et al. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe. APL Mater. 4, 116102 (2016).

    Article  Google Scholar 

  35. 35.

    Ma, J., Wei, S.-H., Gessert, T. A. & Chin, K. K. Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: case of Cu impurities in CdTe. Phys. Rev. B 83, 245207 (2011).

    Article  Google Scholar 

  36. 36.

    Yang, J. H., Metzger, W. K. & Wei, S. H. Carrier providers or killers: the case of Cu defect in CdTe. Appl. Phys. Lett. 111, 042106 (2017).

    Article  Google Scholar 

  37. 37.

    Grecu, D. & Compaan, A. D. Photoluminescence study of Cu diffusion and electromigration in CdTe. Appl. Phys. Lett. 75, 361–363 (1999).

    Article  Google Scholar 

  38. 38.

    Grecu, D., Compaan, A. D., Young, D., Jayamaha, U. & Rose, D. H. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells. J. Appl. Phys. 88, 2490–2496 (2000).

    Article  Google Scholar 

  39. 39.

    Gretener, C. et al. New, perspective on the performance stability of CdTe solar cells. Sol. Energy Mater. Sol. Cells 146, 51–57 (2016).

    Article  Google Scholar 

  40. 40.

    Dobson, K. D., Fisher, I. V., Hodes, G. & Cahen, D. Stability of CdTe/CdS thin-film solar cells. Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).

    Article  Google Scholar 

  41. 41.

    Corwine, C. R., Pudov, A. O., Gloeckler, M., Demtsu, S. H. & Sites, J. R. Copper inclusion and migration from the back contact in CdTe solar cells. Sol. Energy Mater. Sol. Cells 82, 481–489 (2004).

    Google Scholar 

  42. 42.

    Albin, D. S. Accelerated stress testing and diagnostic analysis of degradation in CdTe solar cells. In Proceedings of SPIE 7048, Reliability of Photovoltaic Cells, Modules, Components, and Systems, 70480N (SPIE, 2008).

  43. 43.

    First Solar Series 6 Module Datasheet. First Solar http://www.firstsolar.com/-/media/First-Solar/Technical-Documents/Series-6-Datasheets/Series-6-Datasheet.ashx (2019).

  44. 44.

    Marfaing, Y. Impurity doping and compensation mechanisms in CdTe. Thin Solid Films 387, 123–128 (2001).

    Article  Google Scholar 

  45. 45.

    Pautrat, J. L., Francou, J. M., Magnea, N., Molva, E. & Saminadayar, K. Donors and acceptors in tellurium compounds; the problem of doping and self-compensation. J. Cryst. Growth 72, 194–204 (1985).

    Article  Google Scholar 

  46. 46.

    Selim, F. A. & Kröger, F. A. The defect structure of phosphorus-doped CdTe. J. Electrochem. Soc. Solid State Sci. Technol. 124, 401–408 (1977).

    Google Scholar 

  47. 47.

    Baron, T., Tatarenko, S., Saminadayar, K., Magnea, N. & Fontenille, J. Plasma nitrogen doping of ZnTe, Cd1 – xZnxTe and CdTe by molecular beam epitaxy. Appl. Phys. Lett. 65, 1284–1286 (1994).

    Article  Google Scholar 

  48. 48.

    Tatarenko, S. et al. Nitrogen doping of Te-based II–VI compounds. J. Cryst. Growth 175/176, 682–687 (1997).

    Article  Google Scholar 

  49. 49.

    Fahrenbuch, A. L. Ohmic contacts and doping of CdTe. Sol. Cells 21, 399–412 (1987).

    Article  Google Scholar 

  50. 50.

    Duenow, J. et al. Relationship of open-circuit voltage to CdTe hole concentration and lifetime. IEEE J. Photovolt. 6, 1641–1644 (2016).

    Article  Google Scholar 

  51. 51.

    Nagaoka, A., Kuciauskas, D., McCoy, D. & Scarpulla, M. A. High p-type doping, mobility and photocarrier lifetime in arsenic-doped CdTe single crystals. Appl. Phys. Lett. 112, 192101 (2018).

    Article  Google Scholar 

  52. 52.

    Chu, T. L., Chu, S. S., Ferekides, C., Britt, J. & Wu, C. Q. Thin-film junctions of cadmium telluride by metalorganic chemical vapor deposition. J. Appl. Phys. 71, 3870 (1992).

    Article  Google Scholar 

  53. 53.

    Berrigan, R. A., Maugn, N., Irvine, S. J. C., Cole-Hamilton, D. J. & Ellis, D. Thin films of CdTe/CdS grown by MOCVD for photovoltaics. J. Cryst. Growth 195, 718–724 (1998).

    Article  Google Scholar 

  54. 54.

    Proskuryakov, Y. Y. et al. Doping levels, trap density of states and the performance of co-doped CdTe(As,Cl) photovoltaic devices. Sol. Energy Mater. Sol. Cells 93, 1572–1581 (2009).

    Article  Google Scholar 

  55. 55.

    Kartopu, G. et al. Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping. Sol. Energy Mater. Sol. Cells 194, 259–267 (2019).

    Article  Google Scholar 

  56. 56.

    McCandless, B. E. et al. Overcoming carrier concentration limits in polycrystalline CdTe thin films with in-situ doping. Sci. Rep. 8, 14519 (2018).

    Article  Google Scholar 

  57. 57.

    Romeo, N., Bosio, A. & Rosa, G. The back contact of CdTe/CdS thin film solar cells. In Proc. ISES Solar World Congress 2017 (International Solar Energy Society, 2017); http://proceedings.ises.org/paper/swc2017/swc2017-0130-Romeo.pdf

  58. 58.

    Colegrove, E. et al. Experimental and theoretical comparison of Sb, As and P diffusion mechanisms and doping in CdTe. J. Phys. D Appl. Phys. 51, 075102 (2018).

    Article  Google Scholar 

  59. 59.

    Guthrey, H. et al. Spatial luminescence imaging of dopant incorporation in CdTe Films. J. Appl. Phys. 121, 45304 (2017).

    Article  Google Scholar 

  60. 60.

    Colegrove, E. et al. Phosphorus diffusion mechanisms and deep incorporation in polycrystalline and single-crystalline CdTe. Phys. Rev. Appl. 5, 054014 (2016).

    Article  Google Scholar 

  61. 61.

    Bhargava, R. (ed.) Properties of Wide Bandgap II–VI Semiconductors (INSPEC, 1997).

  62. 62.

    Fiducia, T. A. M. et al. 3D distributions of chlorine and sulphur impurities in a thin-film cadmium telluride solar cell. MRS Adv. 3, 3287–3292 (2018).

    Article  Google Scholar 

  63. 63.

    Ablekim, T. et al. Self-compensation in arsenic doping of CdTe. Sci. Rep. 7, 4563 (2017).

    Article  Google Scholar 

  64. 64.

    O’Connor, D. V. & Phillips, D. Time-Correlated Single Photon Counting (Academic Press, 1984).

  65. 65.

    Metzger, W. K., Romero, M. J., Dippo, P. & Young, M. Characterizing recombination in CdTe solar cells with time-resolved photoluminescence. In Proc. 2006 IEEE 4th World Conference on Photovoltaic Energy Conference 372–375 (IEEE, 2006).

  66. 66.

    Metzger, W. K., Ahrenkiel, R. K., Dashdorj, J. & Friedman, D. J. Analysis of charge separation dynamics in a semiconductor junction. Phys. Rev. B 71, 03530 (2005).

    Article  Google Scholar 

  67. 67.

    Gaury, B. & Haney, P. M. Charged grain boundaries reduce the open-circuit voltage of polycrystalline solar cells. J. Appl. Phys. 120, 234503 (2016).

    Article  Google Scholar 

  68. 68.

    Ablekim, T., Colegrove, E. & Metzger, W. K. Interface engineering for 25% CdTe solar cells. ACS Appl. Energy Mater. 1, 5135–5139 (2018).

    Google Scholar 

  69. 69.

    Gloeckler, M., Sites, J. R. & Metzger, W. K. Grain boundary recombination in Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 98, 113704 (2005).

    Article  Google Scholar 

  70. 70.

    Metzger, W. K. & Gloeckler, M. The impact of charged grain boundaries on thin-film solar cells and characterization. J. Appl. Phys. 98, 063701 (2005).

    Article  Google Scholar 

  71. 71.

    Moseley, J. et al. Recombination by grain-boundary type in CdTe. J. Appl. Phys. 118, 025702 (2015).

    Article  Google Scholar 

  72. 72.

    Scheer, R. Activation energy of heterojunction diode currents in the limit of interface recombination. J. Appl. Phys. 105, 104505 (2009).

    Article  Google Scholar 

  73. 73.

    Perkins, C. L., Beall, C., Reese, M. O. & Barnes, T. M. Two-dimensional cadmium chloride nanosheets in CdTe solar cells. ACS Appl. Mater. Interfaces 9, 20561 (2017).

    Article  Google Scholar 

  74. 74.

    Werner, J. H., Mattheis, J. & Rau, U. Efficiency limitations of polycrystalline thin film solar cells: case of Cu(In,Ga)Se2. Thin Solid Films 480, 399–409 (2005).

    Article  Google Scholar 

  75. 75.

    Jensen, S. A. et al. Beneficial effect of post-deposition treatment in high-efficiency Cu(In,Ga)Se2 solar cells through reduced potential fluctuations. J. Appl. Phys. 120, 063106 (2016).

    Article  Google Scholar 

  76. 76.

    Casey, H. C. & Stern, F. Concentration-dependent absorption and spontaneous emission of heavily doped GaAs. J. Appl. Phys. 47, 631–643 (1976).

    Article  Google Scholar 

  77. 77.

    Munroe, P. R. The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60, 2–13 (2009).

    Article  Google Scholar 

  78. 78.

    Abou-Ras, D., Nichterwitz, M., Romero, M. J. & Schmidt, S. S. in Advanced Characterization Techniques for Thin Film Solar Cells (eds Abu-Ras, D., Kirchatz, T. & Rau, U.) 312–318 (Wiley, 2011).

  79. 79.

    Perkins, C. L. Molecular anchors for self-assembled monolayers on ZnO: a direct comparison of the thiol and phosphonic acid moieties. J. Phys. Chem. C 113, 18276–18286 (2009).

    Article  Google Scholar 

  80. 80.

    Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 56, 2921–2923 (1991).

    Article  Google Scholar 

  81. 81.

    Kikukawa, A., Hosaka, S. & Imura, R. Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 66, 3510–3512 (1995).

    Article  Google Scholar 

  82. 82.

    Jiang, C.-S., Moutinho, H. R., Friedman, D. J., Geisz, J. F. & Al-Jassim, M. M. Measurement of built-in electrical potential in III-V solar cells by scanning Kelvin probe microscopy. J. Appl. Phys. 93, 10035–10040 (2003).

    Article  Google Scholar 

Download references


The authors thank P. Dippo for low-temperature photoluminescence measurements. This work was authored in part by the National Renewable Energy Laboratory, operated by the Alliance for Sustainable Energy, LLC, for the US Department of Energy under contract no. DE-AC36- 08GO28308. Funding was provided by the US Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office and CRD-13-507. The views expressed do not necessarily represent the views of the US Department of Energy or the US Government.

Author information




S.G., E.C., X.L., R. Mallick, W.Z., R. Malik, J.K. and D.S.A. performed film and device synthesis as well as J–V, J–V versus temperature, EQE and C–V measurements. S.G., D.K., J.M., C.L.P., C.-S.J. and M.M.A. performed photoluminescence, TRPL, CL, XPS, KPFM and STEM measurements. W.K.M., D.L., G.X. and M.G. directed the research. All authors contributed to the design and interpretation of experiments and writing the manuscript.

Corresponding author

Correspondence to W. K. Metzger.

Ethics declarations

Competing interests

S.G., D.L., X.L., R. Mallick, W.Z., R. Malik, J.K., G.X. and M.G. work at First Solar, which is a publicly traded company that manufactures CdTe solar panels and develops grid-connected photovoltaic power plants. Outside of this and the funding listed in the acknowledgments section, the authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metzger, W.K., Grover, S., Lu, D. et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat Energy 4, 837–845 (2019). https://doi.org/10.1038/s41560-019-0446-7

Download citation

Further reading