Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte


Cells with lithium-metal anodes are viewed as the most viable future technology, with higher energy density than existing lithium-ion batteries. Many researchers believe that for lithium-metal cells, the typical liquid electrolyte used in lithium-ion batteries must be replaced with a solid-state electrolyte to maintain the flat, dendrite-free lithium morphologies necessary for long-term stable cycling. Here, we show that anode-free lithium-metal pouch cells with a dual-salt LiDFOB/LiBF4 liquid electrolyte have 80% capacity remaining after 90 charge–discharge cycles, which is the longest life demonstrated to date for cells with zero excess lithium. The liquid electrolyte enables smooth dendrite-free lithium morphology comprised of densely packed columns even after 50 charge–discharge cycles. NMR measurements reveal that the electrolyte salts responsible for the excellent lithium morphology are slowly consumed during cycling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrochemical behaviour of single- and dual-salt electrolytes.
Fig. 2: SEM characterization of lithium morphology.
Fig. 3: XPS spectra for lithium negative electrodes.
Fig. 4: Electrolyte composition during cycling.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  Google Scholar 

  2. 2.

    Betz, J. et al. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019).

    Article  Google Scholar 

  3. 3.

    Genovese, M., Louli, A. J., Weber, R., Hames, S. & Dahn, J. R. Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J. Electrochem. Soc. 165, A3321–A3325 (2018).

    Article  Google Scholar 

  4. 4.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180 (2019).

    Article  Google Scholar 

  5. 5.

    Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article  Google Scholar 

  6. 6.

    Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000).

    Article  Google Scholar 

  7. 7.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  8. 8.

    Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).

    Article  Google Scholar 

  9. 9.

    Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article  Google Scholar 

  10. 10.

    Cohn, A. P., Muralidharan, N., Carter, R., Share, K. & Pint, C. L. Anode-free sodium battery through in situ plating of sodium metal. Nano Lett. 17, 1296–1301 (2017).

    Article  Google Scholar 

  11. 11.

    Assegie, A. A., Cheng, J.-H., Kuo, L.-M., Su, W.-N. & Hwang, B.-J. Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 10, 6125–6138 (2018).

    Article  Google Scholar 

  12. 12.

    Zhang, S. S., Fan, X. & Wang, C. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochim. Acta 258, 1201–1207 (2017).

    Article  Google Scholar 

  13. 13.

    Woo, J.-J. et al. Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. J. Electrochem. Soc. 161, A827–A830 (2014).

    Article  Google Scholar 

  14. 14.

    Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  Google Scholar 

  15. 15.

    Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 1–8 (2018).

    Article  Google Scholar 

  16. 16.

    Kanamura, K., Shiraishi, S. & Takehara, Z. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF. J. Electrochem. Soc. 143, 2187–2197 (1996).

    Article  Google Scholar 

  17. 17.

    Kanamura, K., Shiraishi, S. & Takehara, Z. Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. J. Fluor. Chem. 87, 235–243 (1998).

    Article  Google Scholar 

  18. 18.

    Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  Google Scholar 

  19. 19.

    Nagpure, S. C., Dufek, E. J., Wood, S. M., Dickerson, C. C. & Liaw, B. Effects of external pressure on the performance of lithium anode. Cells Meet. Abstr. MA2018-02, 305–305 (2018).

    Google Scholar 

  20. 20.

    Wilkinson, D. P., Blom, H., Brandt, K. & Wainwright, D. Effects of physical constraints on Li cyclability. J. Power Sources 36, 517–527 (1991).

    Article  Google Scholar 

  21. 21.

    Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715 (2018).

    Article  Google Scholar 

  22. 22.

    Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ. Sci. 12, 780–794 (2019).

    Article  Google Scholar 

  23. 23.

    Hagos, T. T. et al. Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries. ACS Appl. Mater. Interfaces 11, 9955–9963 (2019).

    Article  Google Scholar 

  24. 24.

    Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).

    Article  Google Scholar 

  25. 25.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).

    Article  Google Scholar 

  26. 26.

    Aguesse, F. et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl. Mater. Interfaces 9, 3808–3816 (2017).

    Article  Google Scholar 

  27. 27.

    Jurng, S., Brown, Z. L., Kim, J. & Lucht, B. L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11, 2600–2608 (2018).

    Article  Google Scholar 

  28. 28.

    Brown, Z. L. & Lucht, B. L. Synergistic performance of lithium difluoro(oxalato)borate and fluoroethylene carbonate in carbonate electrolytes for lithium metal anodes. J. Electrochem. Soc. 166, A5117–A5121 (2019).

    Article  Google Scholar 

  29. 29.

    Schedlbauer, T. et al. Lithium difluoro(oxalato)borate: a promising salt for lithium metal based secondary batteries? Electrochim. Acta 92, 102–107 (2013).

    Article  Google Scholar 

  30. 30.

    Brown, Z. L., Jurng, S., Nguyen, C. C. & Lucht, B. L. Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Appl. Energy Mater. 1, 3057–3062 (2018).

    Article  Google Scholar 

  31. 31.

    Zhu, Y., Li, Y., Bettge, M. & Abraham, D. P. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J. Electrochem. Soc. 159, A2109–A2117 (2012).

    Article  Google Scholar 

  32. 32.

    Wilkinson, D. P. & Wainwright, D. In-situ study of electrode stack growth in rechargeable cells at constant pressure. J. Electroanal. Chem. 355, 193–203 (1993).

    Article  Google Scholar 

  33. 33.

    Hirai, T., Yoshimatsu, I. & Yamaki, J. Influence of electrolyte on lithium cycling efficiency with pressurized electrode stack. J. Electrochem. Soc. 141, 611–614 (1994).

    Article  Google Scholar 

  34. 34.

    Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291–A1299 (2019).

    Article  Google Scholar 

  35. 35.

    Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database Version 4.1. (National Institute of Standards and Technology, 2012); https://doi.org/10.18434/T4T88K

  36. 36.

    Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  37. 37.

    Li, J. et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 164, A1534–A1544 (2017).

    Article  Google Scholar 

  38. 38.

    Madec, L. et al. Effect of sulfate electrolyte additives on LiNi1/3Mn1/3Co1/3O2/graphite pouch cell lifetime: correlation between XPS surface studies and electrochemical test results. J. Phys. Chem. C 118, 29608–29622 (2014).

    Article  Google Scholar 

Download references


This research was financially supported by Tesla Canada and NSERC under the Industrial Research Chairs Program. A.J.L. thanks the Nova Scotia Graduate Scholarship programme and the Walter C. Sumner Memorial fellowship for support. M.G. thanks the NSERC PDF Program. The authors acknowledge Dr J. Li (formerly of BASF) and Dr D. J. Xiong (formerly of Capchem) for providing chemicals used in the electrolytes, as well as S. Trussler for expert fabrication of the parts used in this work.

Author information




R.W., M.G., A.J.L. and J.R.D. conceived the idea. R.W., M.G. and A.J.L. designed the experiments with the guidance of J.R.D.; R.W., M.G. and A.J.L. performed the electrochemical measurements with assistance from S.H. and C.M.; R.W. performed the NMR analysis; R.W. performed the XPS analysis with guidance from I.G.H; M.G. and A.J.L. performed the SEM analysis; A.J.L. performed the mechanical pressure measurements. R.W., M.G., A.J.L. and J.R.D. prepared this manuscript with input from all other co-authors.

Corresponding author

Correspondence to J. R. Dahn.

Ethics declarations

Competing interest

Rochelle Weber is employed by Tesla Canada R&D.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Supplementary Table 1 and Supplementary refs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weber, R., Genovese, M., Louli, A.J. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat Energy 4, 683–689 (2019). https://doi.org/10.1038/s41560-019-0428-9

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing