Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Considerations for the scaling-up of water splitting catalysts

A wealth of candidates are being investigated to improve the catalysts found in acidic and alkaline electrolysers. However, attention should be focused on developing stable water oxidation catalysts with improved intrinsic activity — not only increased geometric activity — alongside best practice for data collection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of mass activity and overpotential for hydrogen evolution catalysts.
Fig. 2: Comparison of mass activity and overpotential for oxygen evolution catalysts.

References

  1. 1.

    Seh, Z. W. et al. Science 355, 146 (2017).

    Article  Google Scholar 

  2. 2.

    Ardo, S. et al. Energy Environ. Sci. 11, 2768–2783 (2018).

    Article  Google Scholar 

  3. 3.

    Vesborg, P. C. K. & Jaramillo, T. F. RSC Adv. 2, 7933–7947 (2012).

    Article  Google Scholar 

  4. 4.

    World Energy Outlook 2018 (IEA, 2018).

  5. 5.

    Kemppainen, E. et al. Energy Environ. Sci. 8, 2991–2999 (2015).

    Article  Google Scholar 

  6. 6.

    Zhang, J. et al. Nat. Catal. 1, 985–992 (2018).

    Article  Google Scholar 

  7. 7.

    Ayers, K. E. et al. ECS Trans. 33, 3–15 (2010).

    Article  Google Scholar 

  8. 8.

    Lewinski, K. A., van der Vliet, D. F. & Luopa, S. M. ECS Trans. 69, 893–917 (2015).

    Article  Google Scholar 

  9. 9.

    Seitz, L. C. et al. Science 353, 1011–1014 (2016).

    Article  Google Scholar 

  10. 10.

    Kasian, O., Grote, J.-P., Geiger, S., Cherevko, S. & Mayrhofer, K. J. J. Angew. Chem. Int. Ed. 57, 2488–2491 (2018).

    Article  Google Scholar 

  11. 11.

    Laursen, A. B., Sehested, J., Chorkendorff, I. & Vesborg, P. C. K. Chinese J. Catal. 39, 16–26 (2018).

    Article  Google Scholar 

  12. 12.

    Lettenmeier, P. et al. Chem. Sci. 9, 3570–3579 (2018).

    Article  Google Scholar 

  13. 13.

    Cowley, A. Platinum 2013 Interim Review (Johnson Matthey, 2013).

  14. 14.

    Hinnemann, B. et al. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  Google Scholar 

  15. 15.

    Jaramillo, T. F. et al. Science 317, 100–102 (2007).

    Article  Google Scholar 

  16. 16.

    Popczun, E. J. et al. J. Am. Chem. Soc. 135, 9267–9270 (2013).

    Article  Google Scholar 

  17. 17.

    Kibsgaard, J. et al. Energy Environ. Sci. 8, 3022–3029 (2015).

    Article  Google Scholar 

  18. 18.

    Callejas, J. F., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Chem. Mater. 28, 6017–6044 (2016).

    Article  Google Scholar 

  19. 19.

    Ledendecker, M. et al. Angew. Chem. Int. Ed. 56, 9767–9771 (2017).

    Article  Google Scholar 

  20. 20.

    Dionigi, F. & Strasser, P. Adv. Energy Mater. 6, 1600621 (2016).

    Article  Google Scholar 

  21. 21.

    Zhao, S. et al. Nat. Energy 1, 16184 (2016).

    Article  Google Scholar 

  22. 22.

    You, B. & Sun, Y. Adv. Energy Mater. 6, 1502333 (2016).

    Article  Google Scholar 

  23. 23.

    Frydendal, R. et al. ChemElectroChem 1, 2075–2081 (2014).

    Article  Google Scholar 

  24. 24.

    Roy, C. et al. Nat. Catal. 1, 820–829 (2018).

    Article  Google Scholar 

  25. 25.

    Hansen, H. A., Viswanathan, V. & Nørskov, J. K. J. Phys. Chem. C 118, 6706–6718 (2014).

    Article  Google Scholar 

  26. 26.

    Ping, Y., Nielsen, R. J. & Goddard, W. A. III J. Am. Chem. Soc. 139, 149–155 (2017).

    Article  Google Scholar 

  27. 27.

    Zalitis, C. M., Kucernak, A. R., Sharman, J. & Wright, E. J. Mater. Chem. A 5, 23328–23338 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by a research grant (9455) from VILLUM FONDEN. This project has received funding from the European Research Council (ERC) under the European 4783 Union’s Horizon 2020 research and innovation programme (grant agreement no. 741860).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jakob Kibsgaard or Ib Chorkendorff.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kibsgaard, J., Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat Energy 4, 430–433 (2019). https://doi.org/10.1038/s41560-019-0407-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing