Building aqueous K-ion batteries for energy storage

Abstract

Aqueous K-ion batteries (AKIBs) are promising candidates for grid-scale energy storage due to their inherent safety and low cost. However, full AKIBs have not yet been reported due to the limited availability of suitable electrodes and electrolytes. Here we propose an AKIB system consisting of an Fe-substituted Mn-rich Prussian blue KxFeyMn1 − y[Fe(CN)6]w·zH2O cathode, an organic 3,4,9,10-perylenetetracarboxylic diimide anode and a 22 M KCF3SO3 water-in-salt electrolyte. The cathode achieves 70% capacity retention at 100 C and a lifespan of over 10,000 cycles due to the mitigation of phase transitions by Fe substitution. Meanwhile, the electrolyte can help decrease the dissolution of both electrodes owing to the lack of free water. The AKIB exhibits a high energy density of 80 Wh kg−1 and can operate well at rates of 0.1–20 C and over a wide temperature range (−20 to 60 °C). We believe that our demonstration could pave the way for practical applications of AKIBs for grid-scale energy storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The structure and performance optimization of the designed PBA cathodes.
Fig. 2: Electrochemical performance of the optimal KFeMnHCF-3565 cathode.
Fig. 3: The structural evolution and charge compensation mechanism of the KMnHCF electrode.
Fig. 4: The structural evolution and charge compensation mechanism of the KFeMnHCF-3565 electrode.
Fig. 5: First-principles calculations.
Fig. 6: Performance of the WIS electrolyte and the PTCDI anode.
Fig. 7: Performance of the KFeMnHCF-3565//22 M KCF3SO3//PTCDI full battery.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Yang, Z. et al. Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011).

    Article  Google Scholar 

  2. 2.

    Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  Google Scholar 

  3. 3.

    Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  Google Scholar 

  4. 4.

    Eftekhari, A., Jian, Z. & Ji, X. Potassium secondary batteries. ACS Appl. Mater. Interfaces 9, 4404–4419 (2017).

    Article  Google Scholar 

  5. 5.

    Kim, H. et al. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 8, 1702384 (2018).

    Article  Google Scholar 

  6. 6.

    Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S. & Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 18, 459–479 (2018).

    Article  Google Scholar 

  7. 7.

    Qian, J. et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 8, 1702619 (2018).

    Article  Google Scholar 

  8. 8.

    Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    Article  Google Scholar 

  9. 9.

    Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article  Google Scholar 

  10. 10.

    Su, D., McDonagh, A., Qiao, S. Z. & Wang, G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017).

    Article  Google Scholar 

  11. 11.

    Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  12. 12.

    Leonard, D. P., Wei, Z., Chen, G., Du, F. & Ji, X. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018).

    Article  Google Scholar 

  13. 13.

    Liu, Y., Wei, G., Ma, M. & Qiao, Y. Role of acid in tailoring prussian blue as cathode for high-performance sodium-ion battery. Chem 23, 15991–15996 (2017).

    Article  Google Scholar 

  14. 14.

    Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  Google Scholar 

  15. 15.

    Ren, W., Chen, X. & Zhao, C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018).

    Article  Google Scholar 

  16. 16.

    Nakamoto, K., Sakamoto, R., Ito, M., Kitajou, A. & Okada, S. Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017).

    Article  Google Scholar 

  17. 17.

    Wu, X. et al. Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015).

    Article  Google Scholar 

  18. 18.

    Wu, X. Y. et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014).

    Article  Google Scholar 

  19. 19.

    Wu, X., Cao, Y., Ai, X., Qian, J. & Yang, H. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013).

    Article  Google Scholar 

  20. 20.

    Wu, X. Y. et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117–123 (2015).

    Article  Google Scholar 

  21. 21.

    Bie, X., Kubota, K., Hosaka, T., Chihara, K. & Komaba, S. A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017).

    Article  Google Scholar 

  22. 22.

    Xue, L. et al. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139, 2164–2167 (2017).

    Article  Google Scholar 

  23. 23.

    Moritomo, Y., Urase, S. & Shibata, T. Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim. Acta 210, 963–969 (2016).

    Article  Google Scholar 

  24. 24.

    Wu, X. et al. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026–13030 (2017).

    Article  Google Scholar 

  25. 25.

    Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  Google Scholar 

  26. 26.

    Lukatskaya, M. R. et al. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 11, 2876–2883 (2018).

    Article  Google Scholar 

  27. 27.

    Suo, L. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136–7141 (2016).

    Article  Google Scholar 

  28. 28.

    Nakamoto, K., . & Sakamoto, R. & Sawada, Y. & Ito, M. & Okada, S. Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods 3, 1800220 (2019).

    Article  Google Scholar 

  29. 29.

    Suo, L. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Article  Google Scholar 

  30. 30.

    Gao, H. & Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55, 12768–12772 (2016).

    Article  Google Scholar 

  31. 31.

    Hou, Z., Li, X., Liang, J., Zhu, Y. & Qian, Y. An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3, 1400–1404 (2015).

    Article  Google Scholar 

  32. 32.

    Fernández-Ropero, A. J., Saurel, D., Acebedo, B., Rojo, T. & Casas-Cabanas, M. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40–45 (2015).

    Article  Google Scholar 

  33. 33.

    Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    Article  Google Scholar 

  34. 34.

    Kumar, D., Rajouria, S. K., Kuhar, S. B. & Kanchan, D. K. Progress and prospects of sodium-sulfur batteries: a review. Solid State Ion. 312, 8–16 (2017).

    Article  Google Scholar 

  35. 35.

    Hesse, H., Schimpe, M., Kucevic, D. & Jossen, A. Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids. Energies 10, 2107 (2017).

    Article  Google Scholar 

  36. 36.

    Opiyo, N. Energy storage systems for PV-based communal grids. J. Energy Storage 7, 1–12 (2016).

    Article  Google Scholar 

  37. 37.

    Hueso, K. B., Armand, M. & Rojo, T. High temperature sodium batteries: status, challenges and future trends. Energy Environ. Sci. 6, 734 (2013).

    Article  Google Scholar 

  38. 38.

    Díaz-González, F., Sumper, A., Gomis-Bellmunt, O. & Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 16, 2154–2171 (2012).

    Article  Google Scholar 

  39. 39.

    Soloveichik, G. L. Battery technologies for large-scale stationary energy storage. Annu. Rev. Chem. Biomol. Eng. 2, 503–527 (2011).

    Article  Google Scholar 

  40. 40.

    Fetcenko, M. A. et al. Recent advances in NiMH battery technology. J. Power Sources 165, 544–551 (2007).

    Article  Google Scholar 

  41. 41.

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  Google Scholar 

  42. 42.

    Pan, H. L., Hu, Y. S. & Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).

    Article  Google Scholar 

  43. 43.

    Liang, Y. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017).

    Article  Google Scholar 

  44. 44.

    Lee, M. et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate. Nat. Energy 2, 861–868 (2017).

    Article  Google Scholar 

  45. 45.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  46. 46.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  47. 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  48. 48.

    Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators—Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  49. 49.

    Xiao, P., Song, J., Wang, L., Goodenough, J. B. & Henkelman, G. Theoretical study of the structural evolution of a Na2FeMn(CN)6 cathode upon Na intercalation. Chem. Mater. 27, 3763–3768 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51725206 and 51421002), the National Key Technologies R&D Programme of China (2016YFB0901500), and the Strategic Priority Research Programme of the Chinese Academy of Sciences (XDA21070500), the Strategic Priority Research Programme of the Chinese Academy of Sciences (XDA21070500) and the Beijing Municipal Science and Technology Commission (Z181100004718008).

Author information

Affiliations

Authors

Contributions

Y.-S.H. and Y.L. designed this work; L.J. synthesized the cathodes and carried out the electrochemical experiments and first-principles calculations; C.Z. performed the structural refinement, L.L. carried out the Raman test, J. Zhang and X.Y. performed the hXAS test; Q.Z. performed the transmission electron microscopy test, X.S. and J. Zhao performed the inductively coupled plasma test. L.J., Y.L. and Y.-S.H. wrote the paper; all of the authors participated in analysis of the experimental data and discussions of the results as well as preparing the paper.

Corresponding authors

Correspondence to Yaxiang Lu or Yong-Sheng Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Supplementary Note 1, Supplementary Tables 1–9 and supplementary references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Lu, Y., Zhao, C. et al. Building aqueous K-ion batteries for energy storage. Nat Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing