Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells

Abstract

Defects play an important role in the degradation processes of hybrid halide perovskite absorbers, impeding their application for solar cells. Among all defects, halide anion and organic cation vacancies are ubiquitous, promoting ion diffusion and leading to thin-film decomposition at surfaces and grain boundaries. Here, we employ fluoride to simultaneously passivate both anion and cation vacancies, by taking advantage of the extremely high electronegativity of fluoride. We obtain a power conversion efficiency of 21.46% (and a certified 21.3%-efficient cell) in a device based on the caesium, methylammonium (MA) and formamidinium (FA) triple-cation perovskite (Cs0.05FA0.54MA0.41)Pb(I0.98Br0.02)3 treated with sodium fluoride. The device retains 90% of its original power conversion efficiency after 1,000 h of operation at the maximum power point. With the help of first-principles density functional theory calculations, we argue that the fluoride ions suppress the formation of halide anion and organic cation vacancies, through a unique strengthening of the chemical bonds with the surrounding lead and organic cations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The characterization of perovskite thin films (CsFAMA and CsFAMA-X).
Fig. 2: Surface and bulk characterization of perovskite films.
Fig. 3: Location of Na and F ions and effects on chemical bonding strength and formation energy of FA vacancies.
Fig. 4: Performance of PSCs.
Fig. 5: Stability performance of PSCs under various conditions.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. 2.

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2013).

    Article  Google Scholar 

  3. 3.

    Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).

    Article  Google Scholar 

  4. 4.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  5. 5.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  Google Scholar 

  6. 6.

    Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  Google Scholar 

  7. 7.

    Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  Google Scholar 

  8. 8.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  9. 9.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  Google Scholar 

  10. 10.

    Best Research-Cell Efficiencies (NREL, 2018); https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20181221.pdf

  11. 11.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  Google Scholar 

  12. 12.

    Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  Google Scholar 

  13. 13.

    Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017).

    Article  Google Scholar 

  14. 14.

    Kim, J., Lee, S.-H., Lee, J. H. & Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Article  Google Scholar 

  15. 15.

    Duan, H.-S. et al. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17, 112–116 (2015).

    Article  Google Scholar 

  16. 16.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  17. 17.

    Azpiroz, J. M., Mosconi, E., Bisquert, J. & Angelis, F. D. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  18. 18.

    Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    Article  Google Scholar 

  19. 19.

    Yin, W.-J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014).

    Article  Google Scholar 

  20. 20.

    Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

    Article  Google Scholar 

  21. 21.

    Yu, H., Lu, H., Xie, F., Zhou, S. & Zhao, N. Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells. Adv. Funct. Mater. 26, 1411–1419 (2016).

    Article  Google Scholar 

  22. 22.

    Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  Google Scholar 

  23. 23.

    Wetzelaer, G.-J. A. H. et al. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015).

    Article  Google Scholar 

  24. 24.

    Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016).

    Article  Google Scholar 

  25. 25.

    Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).

    Article  Google Scholar 

  26. 26.

    Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  Google Scholar 

  27. 27.

    Wang, S., Jiang, Y., Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).

    Article  Google Scholar 

  28. 28.

    Juarez-Perez, E. J., Hawash, Z., Raga, S. R., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 9, 3406–3410 (2016).

    Article  Google Scholar 

  29. 29.

    Yang, M. et al. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nat. Commun. 7, 12305 (2016).

    Article  Google Scholar 

  30. 30.

    Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016).

    Article  Google Scholar 

  31. 31.

    Marco, N. D. et al. Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16, 1009–1016 (2016).

    Article  Google Scholar 

  32. 32.

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  Google Scholar 

  33. 33.

    Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  Google Scholar 

  34. 34.

    Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).

    Article  Google Scholar 

  35. 35.

    Cao, J., Tao, S. X., Bobbert, P. A., Wong, C.-P. & Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, 1707350 (2018).

    Article  Google Scholar 

  36. 36.

    Yang, D., Yang, Y. & Liu, Y. A theoretical study on the red- and blue-shift hydrogen bonds of cis- trans formic acid dimer in excited states. Cent. Eur. J. Chem 11, 171–179 (2013).

    Google Scholar 

  37. 37.

    Philippe, B. et al. Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015).

    Article  Google Scholar 

  38. 38.

    Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  Google Scholar 

  39. 39.

    Chen, Q. et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015).

    Article  Google Scholar 

  40. 40.

    Abdi-Jalebi, M. et al. Impact of monovalent cation halide additives on the structural and optoelectronic properties of CH3NH3PbI3 perovskite. Adv. Energy Mater. 6, 1502472 (2016).

    Article  Google Scholar 

  41. 41.

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    Article  Google Scholar 

  42. 42.

    Wang, L. et al. A-site cation effect on growth thermodynamics and photoconductive properties in ultrapure lead iodine perovskite monocrystalline wires. ACS Appl. Mater. Interfaces 9, 25985–25994 (2017).

    Article  Google Scholar 

  43. 43.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  46. 46.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. 47.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51722201; 51672008; 91733301), National Key Research and Development Program of China grant no. 2017YFA0206701, the Natural Science Foundation of Beijing, China (grant no. 4182026), the Young Talent Thousand Program, National Key Research and Development Program of China grant no. 2016YFB0700700, the National Natural Science Foundation of China (51673025) and Beijing Municipal Science and Technology Project no. Z181100005118002. S.T. acknowledges funding from the Computational Sciences for Energy Research tenure track programme of Shell, NWO and FOM (project no. 15CST04-2). The authors would like to thank W. Zou and J. Wang (Nanjing Tech University) for the PLQE measurement during the revision process, and Z. Dai for providing the dynamic light scattering measurement.

Author information

Affiliations

Authors

Contributions

H.Z. and N.L. conceived the idea and designed the experiments. S.T. designed and performed the DFT calculations. Both N.L. and X.N. were involved in all of the experimental parts. Y.C., Z.X., L.W. and H.L. contributed to the fabrication of high-performance PSCs. Z.Q., Y.Z. and L.L. helped to modify the experiments. Y.Lun, X.W. and J.H. performed the KPFM measurements, while Y.Liu, H.X. and Y.G. carried out the UPS and XPS measurement. G.Z. provided the film microstructure analysis. G.B. and C.K.O. assisted in DFT calculations. C.H., Y.B. and S.Y. performed ToF-SIMS measurements. H.Z., Q.C., S.T. and N.L. wrote the manuscript. C.K.O., X.N. and G.B. revised the manuscript. All authors were involved in the discussion of data analysis and commented on the manuscript. N.L. and S.T. have contributed equally to this work.

Corresponding author

Correspondence to Huanping Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–14, Figs. 1–21, Tables 1–3 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, N., Tao, S., Chen, Y. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing