Abstract

Accurately predicting the lifetime of complex, nonlinear systems such as lithium-ion batteries is critical for accelerating technology development. However, diverse aging mechanisms, significant device variability and dynamic operating conditions have remained major challenges. We generate a comprehensive dataset consisting of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles. Using discharge voltage curves from early cycles yet to exhibit capacity degradation, we apply machine-learning tools to both predict and classify cells by cycle life. Our best models achieve 9.1% test error for quantitatively predicting cycle life using the first 100 cycles (exhibiting a median increase of 0.2% from initial capacity) and 4.9% test error using the first 5 cycles for classifying cycle life into two groups. This work highlights the promise of combining deliberate data generation with data-driven modelling to predict the behaviour of complex dynamical systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The datasets used in this study are available at https://data.matr.io/1.

Code availability

Code for data processing is available at https://github.com/rdbraatz/data-driven-prediction-of-battery-cycle-life-before-capacity-degradation. Code for the modelling work is available from the corresponding authors upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

  2. 2.

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

  3. 3.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

  4. 4.

    Peterson, S. B., Apt, J. & Whitacre, J. F. Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J. Power Sources 195, 2385–2392 (2010).

  5. 5.

    Ramadesigan, V. et al. Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J. Electrochem. Soc. 159, R31–R45 (2012).

  6. 6.

    Waag, W., Fleischer, C. & Sauer, D. U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014).

  7. 7.

    Paul, S., Diegelmann, C., Kabza, H. & Tillmetz, W. Analysis of ageing inhomogeneities in lithium-ion battery systems. J. Power Sources 239, 642–650 (2013).

  8. 8.

    Schuster, S. F. et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions. J. Energy Storage 1, 44–53 (2015).

  9. 9.

    Schuster, S. F., Brand, M. J., Berg, P., Gleissenberger, M. & Jossen, A. Lithium-ion cell-to-cell variation during battery electric vehicle operation. J. Power Sources 297, 242–251 (2015).

  10. 10.

    Harris, S. J., Harris, D. J. & Li, C. Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells. J. Power Sources 342, 589–597 (2017).

  11. 11.

    Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 247, 332–338 (2014).

  12. 12.

    Bloom, I. et al. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 101, 238–247 (2001).

  13. 13.

    Broussely, M. et al. Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97–98, 13–21 (2001).

  14. 14.

    Christensen, J. & Newman, J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 151, A1977 (2004).

  15. 15.

    Pinson, M. B. & Bazant, M. Z. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243–A250 (2012).

  16. 16.

    Arora, P. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes. J. Electrochem. Soc. 146, 3543 (1999).

  17. 17.

    Yang, X.-G., Leng, Y., Zhang, G., Ge, S. & Wang, C.-Y. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging. J. Power Sources 360, 28–40 (2017).

  18. 18.

    Christensen, J. & Newman, J. Cyclable lithium and capacity loss in Li-ion cells. J. Electrochem. Soc. 152, A818–A829 (2005).

  19. 19.

    Zhang, Q. & White, R. E. Capacity fade analysis of a lithium ion cell. J. Power Sources 179, 793–798 (2008).

  20. 20.

    Wright, R. B. et al. Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries. J. Power Sources 119–121, 865–869 (2003).

  21. 21.

    Ramadesigan, V. et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models. J. Electrochem. Soc. 158, A1048–A1054 (2011).

  22. 22.

    Cordoba-Arenas, A., Onori, S., Guezennec, Y. & Rizzoni, G. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes. J. Power Sources 278, 473–483 (2015).

  23. 23.

    Burns, J. C. et al. Evaluation of effects of additives in wound Li-ion cells through high precision coulometry. J. Electrochem. Soc. 158, A255–A261 (2011).

  24. 24.

    Burns, J. C. et al. Predicting and extending the lifetime of Li-ion batteries. J. Electrochem. Soc. 160, A1451–A1456 (2013).

  25. 25.

    Chen, C. H., Liu, J. & Amine, K. Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. J. Power Sources 96, 321–328 (2001).

  26. 26.

    Tröltzsch, U., Kanoun, O. & Tränkler, H.-R. Characterizing aging effects of lithium-ion batteries by impedance spectroscopy. Electrochim. Acta 51, 1664–1672 (2006).

  27. 27.

    Love, C. T., Virji, M. B. V., Rocheleau, R. E. & Swider-Lyons, K. E. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic. J. Power Sources 266, 512–519 (2014).

  28. 28.

    Waldmann, T. et al. A mechanical aging mechanism in lithium-ion batteries. J. Electrochem. Soc. 161, A1742–A1747 (2014).

  29. 29.

    Waldmann, T. et al. Influence of cell design on temperatures and temperature gradients in lithium-ion cells: an in operando study. J. Electrochem. Soc. 162, A921–A927 (2015).

  30. 30.

    Bach, T. C. et al. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. J. Energy Storage 5, 212–223 (2016).

  31. 31.

    Harris, S. J. & Lu, P. Effects of inhomogeneities—nanoscale to mesoscale—on the durability of Li-ion batteries. J. Phys. Chem. C 117, 6481–6492 (2013).

  32. 32.

    Lewerenz, M., Marongiu, A., Warnecke, A. & Sauer, D. U. Differential voltage analysis as a tool for analyzing inhomogeneous aging: a case study for LiFePO4|graphite cylindrical cells. J. Power Sources 368, 57–67 (2017).

  33. 33.

    Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 573, 73–77 (2016).

  34. 34.

    Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 16028 (2016).

  35. 35.

    Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

  36. 36.

    Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  37. 37.

    Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

  38. 38.

    Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017).

  39. 39.

    Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

  40. 40.

    Si, X.-S., Wang, W., Hu, C.-H. & Zhou, D.-H. Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213, 1–14 (2011).

  41. 41.

    Wu, L., Fu, X. & Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. Appl. Sci. 6, 166 (2016).

  42. 42.

    Saha, B., Goebel, K. & Christophersen, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries. Trans. Inst. Meas. Control 31, 293–308 (2009).

  43. 43.

    Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. & Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 239, 680–688 (2013).

  44. 44.

    Hu, C., Jain, G., Tamirisa, P. & Gorka, T. Method for estimating the capacity and predicting remaining useful life of lithium-ion battery. Appl. Energy 126, 182–189 (2014).

  45. 45.

    Miao, Q., Xie, L., Cui, H., Liang, W. & Pecht, M. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique. Microelectron. Reliab. 53, 805–810 (2013).

  46. 46.

    Hu, X., . & Jiang, J. & Cao, D. & Egardt, B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Trans. Ind. Electron. 63, 2645–2656 (2016).

  47. 47.

    Zhang, Y., . & Xiong, R. & He, H. & Pecht, M. Lithium-ion battery remaining useful life prediction with Box–Cox transformation and Monte Carlo simulation. IEEE Trans. Ind. Electron. 66, 1585–1597 (2019).

  48. 48.

    Zhang, Y., & Xiong, R. & He, H. & Pecht, M. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 67, 5695–5705 (2018).

  49. 49.

    Saha, B. & Goebel, K. Battery data set. NASA Ames Progn. Data Repos. (2007).

  50. 50.

    Anseán, D. et al. Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging. J. Power Sources 321, 201–209 (2016).

  51. 51.

    Anseán, D. et al. Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycles under dynamic driving schedule. J. Power Sources 356, 36–46 (2017).

  52. 52.

    Liu, P. et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499–A507 (2010).

  53. 53.

    Safari, M. & Delacourt, C. Aging of a commercial graphite/LiFePO4 cell. J. Electrochem. Soc. 158, A1123–A1135 (2011).

  54. 54.

    Sarasketa-Zabala, E. et al. Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 119, 896–906 (2015).

  55. 55.

    Ahmed, S. et al. Enabling fast charging—a battery technology gap assessment. J. Power Sources 367, 250–262 (2017).

  56. 56.

    Gyenes, B., Stevens, D. A., Chevrier, V. L. & Dahn, J. R. Understanding anomalous behavior in Coulombic efficiency measurements on Li-ion batteries. J. Electrochem. Soc. 162, A278–A283 (2015).

  57. 57.

    Lewerenz, M. et al. Systematic aging of commercial LiFePO4|graphite cylindrical cells including a theory explaining rise of capacity during aging. J. Power Sources 345, 254–263 (2017).

  58. 58.

    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

  59. 59.

    Bloom, I. et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application. J. Power Sources 139, 295–303 (2005).

  60. 60.

    Smith, A. J., Burns, J. C. & Dahn, J. R. High-precision differential capacity analysis of LiMn2O4/graphite cells. Electrochem. Solid-State Lett. 14, A39–A41 (2011).

  61. 61.

    Dubarry, M., Truchot, C. & Liaw, B. Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 219, 204–216 (2012).

  62. 62.

    Berecibar, M. et al. Online state of health estimation on NMC cells based on predictive analytics. J. Power Sources 320, 239–250 (2016).

  63. 63.

    Berecibar, M., Garmendia, M., Gandiaga, I., Crego, J. & Villarreal, I. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application. Energy 103, 784–796 (2016).

  64. 64.

    Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

  65. 65.

    Richardson, R. R., Birkl, C. R., Osborne, M. A. & Howey, D. A. Gaussian process regression for in-situ capacity estimation of lithium-ion batteries. IEEE Trans. Ind. Inform. 15, 127–138 (2019).

  66. 66.

    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996).

Download references

Acknowledgements

This work was supported by Toyota Research Institute through the Accelerated Materials Design and Discovery programme. P.M.A. was supported by the Thomas V. Jones Stanford Graduate Fellowship and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. N.P. was supported by SAIC Innovation Center through Stanford Energy 3.0 industry affiliates programme. S.J.H. was supported by the Assistant Secretary for Energy Efficiency, Vehicle Technologies Office of the US Department of Energy under the Advanced Battery Materials Research Program. We thank E. Reed, S. Ermon, Y. Li, C. Bauemer, A. Grover, T. Markov, D. Deng, A. Baclig and H. Thaman for discussions.

Author information

Author notes

  1. These authors contributed equally: K. A. Severson, P. M. Attia.

Affiliations

  1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Kristen A. Severson
    • , Benben Jiang
    • , Dimitrios Fraggedakis
    • , Martin Z. Bazant
    •  & Richard D. Braatz
  2. Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA

    • Peter M. Attia
    • , Norman Jin
    • , Nicholas Perkins
    • , Zi Yang
    • , Michael H. Chen
    • , Stephen J. Harris
    •  & William C. Chueh
  3. Toyota Research Institute, Los Altos, CA, USA

    • Muratahan Aykol
    •  & Patrick K. Herring
  4. Materials Science Division, Lawrence Berkeley National Lab, Berkeley, CA, USA

    • Stephen J. Harris

Authors

  1. Search for Kristen A. Severson in:

  2. Search for Peter M. Attia in:

  3. Search for Norman Jin in:

  4. Search for Nicholas Perkins in:

  5. Search for Benben Jiang in:

  6. Search for Zi Yang in:

  7. Search for Michael H. Chen in:

  8. Search for Muratahan Aykol in:

  9. Search for Patrick K. Herring in:

  10. Search for Dimitrios Fraggedakis in:

  11. Search for Martin Z. Bazant in:

  12. Search for Stephen J. Harris in:

  13. Search for William C. Chueh in:

  14. Search for Richard D. Braatz in:

Contributions

P.M.A., N.J., N.P., M.H.C. and W.C.C. conceived of and conducted the experiments. K.A.S., Z.Y. and B.J. performed the modelling. M.A., Z.Y. and P.K.H. performed data management. P.M.A., K.A.S., N.J., B.J., D.F., M.Z.B., S.J.H., W.C.C. and R.D.B. interpreted the results. All authors edited and reviewed the manuscript. W.C.C. and R.D.B. supervised the work.

Competing interests

K.A.S., R.D.B., W.C.C., P.M.A., N.J., S.J.H. and N.P. have filed a patent related to this work: US Application No. 62/575,565, dated 16 October 2018.

Corresponding authors

Correspondence to William C. Chueh or Richard D. Braatz.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–29, Supplementary Tables 1–9, Supplementary Notes 1–7, Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41560-019-0356-8

Further reading