A common practise in the research of Li–S batteries is to use high electrode porosity and excessive electrolytes to boost sulfur-specific capacity. Here we propose a class of dense intercalation-conversion hybrid cathodes by combining intercalation-type Mo6S8 with conversion-type sulfur to realize a Li–S full cell. The mechanically hard Mo6S8 with fast Li-ion transport ability, high electronic conductivity, active capacity contribution and high affinity for lithium polysulfides is shown to be an ideal backbone to immobilize the sulfur species and unlock their high gravimetric capacity. Cycling stability and rate capability are reported under realistic conditions of low carbon content (~10 wt%), low electrolyte/active material ratio (~1.2 µl mg−1), low cathode porosity (~55 vol%) and high mass loading (>10 mg cm−2). A pouch cell assembled based on the hybrid cathode and a 2× excess Li metal anode is able to simultaneously deliver a gravimetric energy density of 366 Wh kg−1 and a volumetric energy density of 581 Wh l−1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Liu, X., Huang, J. Q., Zhang, Q. & Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017).

  2. 2.

    Manthiram, A., Fu, Y., Chung, S. H., Zu, C. & Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

  3. 3.

    Zhang, S., Zhao, K., Zhu, T. & Li, J. Electrochemomechanical segradation of high-capacity battery electrode materials. Prog. Mater. Sci. 89, 479–521 (2017).

  4. 4.

    Pang, Q., Liang, X., Kwok, C. Y., Kulisch, J. & Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 7, 1601630 (2016).

  5. 5.

    Xue, W. et al. Gravimetric and volumetric energy densities of lithium-sulfur batteries. Curr. Opin. Electrochem. 6, 92–99 (2017).

  6. 6.

    Fan, F. Y. et al. Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries. J. Electrochem. Soc. 163, A3111–A3116 (2016).

  7. 7.

    Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

  8. 8.

    Chen, J. et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

  9. 9.

    McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li-S and Li-ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015).

  10. 10.

    Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

  11. 11.

    Berg, E. J., Villevieille, C., Streich, D., Trabesinger, S. & Novák, P. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015).

  12. 12.

    Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325 (2011).

  13. 13.

    Xue, W. et al. Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy 38, 12–18 (2017).

  14. 14.

    Tao, X. et al. Strong sulfur binding with conducting Magneli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. Nano Lett. 14, 5288–5294 (2014).

  15. 15.

    Wei Seh, Z. et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).

  16. 16.

    Liang, X. & Nazar, L. F. In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes. ACS Nano 10, 4192–4198 (2016).

  17. 17.

    Li, Z., Zhang, J. & Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015).

  18. 18.

    Liang, X. et al. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

  19. 19.

    Ma, L. et al. Hybrid cathode architectures for lithium batteries based on TiS2 and sulfur. J. Mater. Chem. A 3, 19857–19866 (2015).

  20. 20.

    Su, Y.-S. & Manthiram, A. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries. J. Power Sources 270, 101–105 (2014).

  21. 21.

    Zhou, G. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl Acad. Sci. USA 114, 840–845 (2017).

  22. 22.

    Lin, Z., Liu, T. F., P., A. X. & Liang, C. D. Aligning academia and industry for unified battery performance metrics. Nat. Commun. 9, 5262 (2018).

  23. 23.

    Zhao, Q., Zheng, J. & Archer, L. Interphases in lithium-sulfur batteries: toward deployable devices with competitive energy density and stability. ACS Energy Lett. 3, 2104–2113 (2018).

  24. 24.

    Pan, H. et al. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28, 1707234 (2018).

  25. 25.

    Wang, H. et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 8, 1800590 (2018).

  26. 26.

    Chung, S. H. & Manthiram, A. Rational design of statically and dynamically stable lithium-sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio. Adv. Mater. 30, 1705951 (2018).

  27. 27.

    Mao, Y. et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat. Commun. 8, 14628 (2017).

  28. 28.

    Chung, S.-H. & Manthiram, A. Designing lithium-sulfur cells with practically necessary parameters. Joule 2, 710–724 (2018).

  29. 29.

    Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal-organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

  30. 30.

    Xu, G. et al. Absorption mechanism of carbon-nanotube paper-titanium dioxide as a multifunctional barrier material for lithium-sulfur batteries. Nano Res. 8, 3066–3074 (2015).

  31. 31.

    Wang, X. et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries. Energy Environ. Sci. 9, 2533–2538 (2016).

  32. 32.

    Peng, H. J. et al. Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139, 8458 (2017).

  33. 33.

    Zhou, G. et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356–365 (2015).

  34. 34.

    Zhang, Q. et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015).

  35. 35.

    Yuan, Z. et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).

  36. 36.

    Zang, J. et al. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 8, 2663–2675 (2015).

  37. 37.

    Li, G. et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries. Nat. Commun. 9, 705 (2018).

  38. 38.

    Pan, H. et al. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat. Energy 2, 813 (2017).

  39. 39.

    Tan, G. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017).

  40. 40.

    Levi, M. D. et al. Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 chevrel phase. J. Electrochem. Soc. 151, A1044 (2004).

  41. 41.

    Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

  42. 42.

    Mei, L. et al. Chevrel phase Mo6T8 (T = S, Se) as electrodes for advanced energy storage. Small 13, 1701441 (2017).

  43. 43.

    Saha, P. et al. A convenient approach to Mo6S8 chevrel phase cathode for rechargeable magnesium battery. J. Electrochem. Soc. 161, A593–A598 (2014).

  44. 44.

    Peng, H.-J., Huang, J.-Q., Cheng, X.-B. & Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).

  45. 45.

    Cañas, N. A., Fronczek, D. N., Wagner, N., Latz, A. & Friedrich, K. A. Experimental and theoretical analysis of products and reaction intermediates of lithium-sulfur batteries. J. Phys. Chem. C 118, 12106–12114 (2014).

  46. 46.

    Rajput, N. N. et al. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions. Chem. Mater. 29, 3375–3379 (2017).

  47. 47.

    Pope, M. A. & Aksay, I. A. Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5, 1500124 (2015).

  48. 48.

    Hagen, M. et al. Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater. 5, 1401986 (2015).

  49. 49.

    Eroglu, D., Zavadil, K. R. & Gallagher, K. G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery. J. Electrochem. Soc. 162, A982–A990 (2015).

  50. 50.

    Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

  52. 52.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

  53. 53.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

  54. 54.

    Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

  55. 55.

    Wan, L. F., Perdue, B. R., Apblett, C. A. & Prendergast, D. Mg desolvation and intercalation mechanism at the Mo6S8 Chevrel phase surface. Chem. Mater. 27, 5932–5940 (2015).

  56. 56.

    Tarascon, J., DiSalvo, F., Murphy, D., Hull, G. & Waszczak, J. New superconducting ternary molybdenum chalcogenides in Mo6Se8, T1Mo6S8, and T1Mo6Se8. Phys. Rev. B 29, 172 (1984).

  57. 57.

    Geng, L., Lv, G., Xing, X. & Guo, J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015).

Download references


We acknowledge the support by Samsung Advanced Institute of Technology, National Key Technologies R&D Program, China (grant no. 2018YFB0104400) and the National Natural Science Foundation of China (grant no. 51872322). We also acknowledge the valuable suggestions for experiments from L. Miao and the carbonaceous materials provided by B. Fugetsu at School of Engineering, The University of Tokyo. This work made use of the MRSEC Shared Experimental Facilities supported by the National Science Foundation under award no. DMR-1419807. L.S. acknowledges the One Hundred Talent Project of the Chinese Academy of Sciences and Thousand Talents Program for Young Scientists.

Author information


  1. Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Weijiang Xue
    • , Zhe Shi
    • , Liumin Suo
    • , Chao Wang
    • , Ziqiang Wang
    • , Kang Pyo So
    • , Yuming Chen
    • , Long Qie
    • , Zhi Zhu
    • , Guiyin Xu
    •  & Ju Li
  2. Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

    • Liumin Suo
  3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China

    • Liumin Suo
  4. Songshan Lake Materials Laboratory, Dongguan, Guangdong, China

    • Liumin Suo
  5. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

    • Haozhe Wang
    • , Daiwei Yu
    •  & Jing Kong
  6. Advanced Materials Lab , Samsung Advanced Institute of Technology America, Burlington, MA, USA

    • Andrea Maurano
  7. Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, China

    • Long Qie


  1. Search for Weijiang Xue in:

  2. Search for Zhe Shi in:

  3. Search for Liumin Suo in:

  4. Search for Chao Wang in:

  5. Search for Ziqiang Wang in:

  6. Search for Haozhe Wang in:

  7. Search for Kang Pyo So in:

  8. Search for Andrea Maurano in:

  9. Search for Daiwei Yu in:

  10. Search for Yuming Chen in:

  11. Search for Long Qie in:

  12. Search for Zhi Zhu in:

  13. Search for Guiyin Xu in:

  14. Search for Jing Kong in:

  15. Search for Ju Li in:


L.S., W.X. and J.L. conceived and designed the experiments. W.X., L.S. and C.W. fabricated the HMSC cathode. W.X., K.P.S., Y.C., L.Q., Z.Z. and G.X. carried out material characterization and electrochemical measurements. Z.S. carried out the DFT theoretical calculations. Z.W. and D.Y. carried out the TEM observation. H.W. and J.K. conducted the four-point-probe resistivity test. W.X., C.W. and A.M. made the pouch cell. W.X., L.S., J.L. and Z.S. wrote the paper. All authors discussed the results and reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Liumin Suo or Ju Li.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–25, Supplementary Note 1, Supplementary Tables 1–3.

About this article

Publication history