Abstract

Pseudocapacitive energy storage in supercapacitor electrodes differs significantly from the electrical double-layer mechanism of porous carbon materials, which requires a change from conventional thinking when choosing appropriate electrolytes. Here we show how simply changing the solvent of an electrolyte system can drastically influence the pseudocapacitive charge storage of the two-dimensional titanium carbide, Ti3C2 (a representative member of the MXene family). Measurements of the charge stored by Ti3C2 in lithium-containing electrolytes with nitrile-, carbonate- and sulfoxide-based solvents show that the use of a carbonate solvent doubles the charge stored by Ti3C2 when compared with the other solvent systems. We find that the chemical nature of the electrolyte solvent has a profound effect on the arrangement of molecules/ions in Ti3C2, which correlates directly to the total charge being stored. Having nearly completely desolvated lithium ions in Ti3C2 for the carbonate-based electrolyte leads to high volumetric capacitance at high charge–discharge rates, demonstrating the importance of considering all aspects of an electrochemical system during development.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

  2. 2.

    Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

  3. 3.

    Salanne, M. et al. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016).

  4. 4.

    Lukatskaya, M. R., Dunn, B. & Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016).

  5. 5.

    Nitta, N., Wu, F., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

  6. 6.

    Zhu, Y. et al. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

  7. 7.

    Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

  8. 8.

    Mourad, E. et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453 (2017).

  9. 9.

    Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

  10. 10.

    Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).

  11. 11.

    Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

  12. 12.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

  13. 13.

    Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

  14. 14.

    Lin, Z. et al. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 326, 575–579 (2016).

  15. 15.

    Dall’Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y. & Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 306, 510–515 (2016).

  16. 16.

    Kajiyama, S. et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Adv. Energy Mater. 7, 1601873 (2017).

  17. 17.

    Wang, X. et al. Geometrically confined favourable ion packing for high gravimetric capacitance in carbon–ionic liquid supercapacitors. Energy Environ. Sci. 9, 232–239 (2016).

  18. 18.

    Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

  19. 19.

    Brouillette, D., Perron, G. & Desnoyers, J. E. Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochim. Acta 44, 4721–4742 (1999).

  20. 20.

    Gogotsi, Y. & Penner, R. M. Energy storage in nanomaterials—capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018).

  21. 21.

    Segalini, J., Daffos, B., Taberna, P.-L., Gogotsi, Y. & Simon, P. Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55, 7489–7494 (2010).

  22. 22.

    Taberna, P., Simon, P. & Fauvarque, J.-F. Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, A292–A300 (2003).

  23. 23.

    Okubo, M., Sugahara, A., Kajiyama, S. & Yamada, A. MXene as a charge storage host. Acc. Chem. Res. 51, 591–599 (2018).

  24. 24.

    Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).

  25. 25.

    Futamura, R. et al. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225 (2017).

  26. 26.

    Come, J. et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17, 27–35 (2015).

  27. 27.

    Jäckel, N. et al. Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Appl. Mater. Interfaces 8, 32089–32093 (2016).

  28. 28.

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).

  29. 29.

    Brousse, T., Bélanger, D. & Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

  30. 30.

    Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

  31. 31.

    Park, S. H., Kim, J., Lee, W.-E., Byun, D.-J. & Kim, M. H. One-step synthesis of hollow dimpled polystyrene microparticles by dispersion polymerization. Langmuir 33, 2275–2282 (2017).

  32. 32.

    Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

  33. 33.

    Li, K., Liu, J., Huang, Y., Bu, F. & Xu, Y. Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability. J. Mater. Chem. A 5, 5466–5474 (2017).

  34. 34.

    Meyer, A., Dimeo, R., Gehring, P. & Neumann, D. The high-flux backscattering spectrometer at the NIST Center for Neutron Research. Rev. Sci. Instrum. 74, 2759–2777 (2003).

  35. 35.

    Mitchell, J. B., Lo, W. C., Genc, A., LeBeau, J. & Augustyn, V. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide. Chem. Mater. 29, 3928–3937 (2017).

  36. 36.

    Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

  37. 37.

    Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

  38. 38.

    Wang, H.-W., Naguib, M., Page, K., Wesolowski, D. J. & Gogotsi, Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater. 28, 349–359 (2015).

  39. 39.

    Semino, R., Zaldívar, G., Calvo, E. J. & Laria, D. Lithium solvation in dimethyl sulfoxide–acetonitrile mixtures. J. Chem. Phys. 141, 214509 (2014).

Download references

Acknowledgements

The research was sponsored by the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences. Access to the HFBS was provided by the Center for High Resolution Neutron Scattering, a partnership between the NIST and the NSF under agreement no. DMR-1508249. Certain commercial equipment, instruments or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. J. Li and H. Wang from Drexel University are acknowledged for helping with material characterization. Y. Honda and Y. Soda from Murata Manufacturing Co. are acknowledged for helpful discussions and help with the characterization.

Author information

Affiliations

  1. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA

    • Xuehang Wang
    • , Tyler S. Mathis
    • , Ke Li
    • , Christine Hatter
    • , Patrick Urbankowski
    • , Asia Sarycheva
    •  & Yury Gogotsi
  2. Materials Science Department—CIRIMAT, Université Paul Sabatier, Toulouse, France

    • Zifeng Lin
    •  & Patrice Simon
  3. Department of Materials Science and Engineering, Sichuan University, Chengdu, China

    • Zifeng Lin
  4. Materials Science and Technology Division, Materials Theory Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • Lukas Vlcek
  5. Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Oak Ridge, TN, USA

    • Lukas Vlcek
  6. Murata Manufacturing Co., Ltd, Nagaokakyo-shi, Kyoto, Japan

    • Takeshi Torita
  7. Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • Naresh C. Osti
    •  & Eugene Mamontov
  8. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA

    • Madhusudan Tyagi
  9. Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA

    • Madhusudan Tyagi
  10. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR3459, Amiens, France

    • Patrice Simon

Authors

  1. Search for Xuehang Wang in:

  2. Search for Tyler S. Mathis in:

  3. Search for Ke Li in:

  4. Search for Zifeng Lin in:

  5. Search for Lukas Vlcek in:

  6. Search for Takeshi Torita in:

  7. Search for Naresh C. Osti in:

  8. Search for Christine Hatter in:

  9. Search for Patrick Urbankowski in:

  10. Search for Asia Sarycheva in:

  11. Search for Madhusudan Tyagi in:

  12. Search for Eugene Mamontov in:

  13. Search for Patrice Simon in:

  14. Search for Yury Gogotsi in:

Contributions

X.W. and Y.G. planned the study. X.W., T.S.M, Z.L. and T.T. conducted electrochemical testing. K.L. synthesized all MXenes, Z.L. performed the in situ XRD measurement and L.V. performed the MD simulation. C.H., P.U. and A.S. performed TEM, XPS and Raman investigations, respectively. N.C.O., M.T. and E.M. performed the neutron scattering. All authors contributed to writing the manuscript under supervision from P.S. and Y.G.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Yury Gogotsi.

Supplementary information

  1. Supplementary Information

    Supplementary Discussions 1–3, Supplementary Tables 1–3, Supplementary Figures 1–15, Supplementary references.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41560-019-0339-9